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Abstract. We obtain spectral conditions that characterize mild well-posed inhomo-
geneous differential equations in a general Banach space X. Lp periodic solutions of
first and second order equations are considered. The results are expressed in terms of
operator-valued Fourier multipliers. Our approach provides a unified framework for var-
ious notions of strong and mild solutions. Applications to semilinear equations of second
order in Hilbert spaces are given.

1. Introduction

Operator-valued Fourier multipliers and their applications to differential equations have
received much attention recently. Among the many papers on the subject, we mention
Arendt-Bu [5], Weis [18] and Denk-Hieber-Prüss [10]. Mild solutions of abstract differential
equations are of great importance and are connected to operator semigroups and cosine
functions for first and second order problems respectively (see e.g. the monograph [3]). It
was discovered recently that for strong solutions of the first order problem, well-posedness
did not require that the operator involved be the generator of a semigroup. In Arendt-Bu
[5], a very simple and elegant characterization of strong well-posedness was established
for periodic solutions. However the problem of characterizing mild well-posedness was left
open, except when the operator A generates C0−continuous semigroup. See the remark
after Proposition 3.4. in [5].

The main objective of this paper is to establish a characterization of mild well-posedness
for periodic solutions of differential equations of first and second order. We work with a
different definition of mild solution and show that, for the first order Cauchy problem,
it coincides with the one adopted by Arendt and Bu [5] in case A generates a strongly
continuous semigroup. Actually, the definition of mild solutions that we adopt is inspired
by Staffans [15] where he worked with a first order equation in Hilbert space.

Let A be a closed and densely defined operator in a Banach space X. We consider the
inhomogeneous problem with periodic boundary conditions

Pper(f)
{

u′(t) = Au(t) + f(t), t ∈ [0, 2π],
u(0) = u(2π).

where f ∈ Lp((0, 2π);X), 1 ≤ p < ∞. A strong Lp-solution of Pper(f) is a function
u ∈ W 1,p((0, 2π);X) ∩ Lp((0, 2π);D(A)) such that Pper(f) is satisfied t-a.e. Assuming
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that X is a UMD space, Arendt and Bu [5] (see also Arendt [2]) have characterized
strong Lp-well posedness of the periodic problem Pper(f) in terms of the R-boundedness
of the set {k(ikI −A)−1 : k ∈ Z}.

Let 1 ≤ p < ∞. We will prove that Pper(f) is (W 1,p, Lp) mildly well-posed (see Defini-
tion 3.1) if and only if iZ ⊂ ρ(A) and ((ikI −A)−1)k∈Z is an Lp-multiplier. In the case of
the Cauchy problem of second order, we introduce two new notions of mild solutions and
this allows us to distinguish between having ((−k2I−A)−1)k∈Z and (ik(−k2I−A)−1)k∈Z as
Lp-multipliers. The latter gives a more transparent description of the concept of C1−mild
solution of the second order problem (see [8], [13] and [14]).

The interest in using Fourier multipliers comes from the fact that sufficient conditions
for operator valued Fourier multipliers have been established recently (see [5], [10], [18]
and [12]).

The paper is organized as follows. In section 2, we give some preliminaries on operator
valued Fourier multipliers and strong well posedness of Pper(f). In section 3, we establish a
characterization of mild well-posedness of Pper(f) and its connection to strongly continuous
semigroups. Section 4 is concerned with the second order problem. There, we present
two notions of mild well-posedness and characterize them through Fourier multipliers.
Furthermore, we examine the situation when A is the generator of a strongly continuous
cosine function on X. In Section 5, we present a unified approach to mild well posedness for
the first and second order problems in UMD Banach spaces using Hardy-Sobolev spaces.
Finally, in section 6, an application to semilinear equations in Hilbert spaces is considered.

2. Preliminaries

Let X be a Banach space. We denote by L(X) the Banach algebra of all bounded linear
operators on X. If Y is another Banach space, we write L(X, Y ) for the space of bounded
linear operators from X to Y. By ρ(A) we denote the resolvent set of the operator A, and
we write R(λ,A) = (λ−A)−1 when λ ∈ ρ(A).

For f ∈ L1((0, 2π);X) denote by

f̂(k) =
1
2π

∫ 2π

0
e−iktf(t)dt

the kth Fourier coefficient of f , where k ∈ Z. The Fourier coefficients determine the
function f ; i.e., f̂(k) = 0 for all k ∈ Z if and only if f(t) = 0 a.e.

We shall frequently identify the spaces of (vector or operator-valued) functions defined
on [0, 2π] with their periodic extensions to R. Thus, throughout, we consider the space
Lp

2π(R; X) (which is also denoted by Lp((0, 2π);X), 1 ≤ p ≤ ∞) of all 2π-periodic Bochner
measurable X-valued functions f such that the restriction of f to [0, 2π] is p-integrable
(essentially bounded if p = ∞).

We recall the notion of operator-valued Fourier multiplier.

Definition 2.1. Let 1 ≤ p < ∞. A sequence (Mk)k∈Z ⊂ L(X) is an Lp-multiplier if, for
each f ∈ Lp((0, 2π);X) there exists a function g ∈ Lp((0, 2π);X) such that

Mkf̂(k) = ĝ(k), k ∈ Z.
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If a sequence (Mk)k∈Z ⊂ B(X) is an Lp-multiplier, then there exists a unique bounded
operator M : Lp((0, 2π);X) → Lp((0, 2π);X) such that

(̂Mf)(k) = Mkf̂(k),

for all k ∈ Z and all f ∈ Lp((0, 2π);X).
Recall that a family T ⊂ L(X, Y ) is called R-bounded if there is a constant C ≥ 0 such

that

(2.1) ||
n∑

j=1

rj ⊗ Tjxj ||Lp(0,1;Y ) ≤ Cp||
n∑

j=1

rj ⊗ xj ||Lp(0,1;X)

for all T1, ..., Tn ∈ T, x1, ..., xn ∈ X and n ∈ N, for some p ∈ [1, ∞). More information
on R−boundedness and its relationship to Lp multipliers can be found in the reference
[5], [10], [18]. If X is isomorphic to a Hilbert space, then, R−boundedness in L(X) is
equivalent to boundedness. On the other hand, in any Banach space, R−boundedness is
a necessary condition for Lp multipliers (see [5, Proposition 1.11, Proposition 1.13 and
Proposition 1.17]).

We say that problem Pper(f) is strongly Lp well-posed if for each f ∈ Lp((0, 2π);X)
there exists a unique strong Lp−solution of Pper(f).

In [5, Theorem 2.3] the following remarkable result was established: if X is a UMD
space and 1 < p < ∞ then the following assertions are equivalent:

(i) Pper(f) is strongly Lp-well-posed.

(ii) iZ ⊂ ρ(A) and (kR(ik, A))k∈Z is an Lp-multiplier.

(iii) iZ ⊂ ρ(A) and (kR(ik, A))k∈Z is R−bounded.

The equivalence (i) ⇔ (ii) is valid in any Banach space and for p = 1 as well.

The concept of mild solution studied in [5, Section 3] is the following. Let f ∈
L1((0, 2π);X). A function u ∈ C([0, 2π];X) is called a mild solution of the problem Pper(f)
if u(0) = u(2π) and

(2.2)





∫ t

0
u(s)ds ∈ D(A), and

u(t)− u(0) = A

∫ t

0
u(s)ds +

∫ t

0
f(s)ds

for all t ∈ [0, 2π]. It is clear that every strong Lp-solution is a mild solution.
We say that problem Pper(f) is Lp mildly well-posed if for each f ∈ Lp((0, 2π);X) there

exists a unique mild solution of Pper(f).
Now recall from [5, Proposition 3.4] that if D(A) = X, and the problem Pper(f) is Lp

mildly well-posed then we have that iZ ⊂ ρ(A) and (R(ik, A))k∈Z is an Lp-multiplier. In
the following section we will use the above condition to characterize mild well posedness
of Pper(f), adopting a different notion of mild solution.
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3. Mild-well posedness and Lp-multipliers

Let A be a closed operator in X with domain D(A) and 1 ≤ p < ∞. Define the operator
A on Lp((0, 2π);X) by D(A) = W 1,p((0, 2π);X) ∩ Lp((0, 2π);D(A)) and

Au = u′ −Au.

Here W 1,p((0, 2π);X) is the vector valued Sobolev space. When considering the space
Lp((0, 2π);D(A)), we equip D(A) with the graph norm. We now define the notion of mild
solution that we will use.

Definition 3.1. We say that the problem Pper(f) is (W 1,p, Lp) mildly well-posed if there
exists a linear operator B that maps Lp((0, 2π);X) continuously into itself as well as
W 1,p((0, 2π);X) ∩ Lp((0, 2π);D(A)) into itself and which satisfies

ABu = BAu = u

for all u ∈ W 1,p((0, 2π);X) ∩ Lp((0, 2π);D(A)). In this case the function Bf is called the
(W 1,p, Lp) mild solution of Pper(f) and B the solution operator.

Clearly, the solution operator B above is unique, if it exists at all. The above notion
of well-posedness is suggested by the paper Staffans [15] in case where p = 2 and X is a
Hilbert space.

Our first main result in this paper characterizes (W 1,p, Lp) mildly well-posedness in
terms of operator-valued Lp-multipliers in Banach spaces.

Theorem 3.2. Let A be closed linear operator and assume D(A) = X. Let 1 ≤ p < ∞.
Then the following assertions are equivalent:

(i) Pper(f) is (W 1,p, Lp) mildly well-posed.

(ii) iZ ⊂ ρ(A) and (R(ik, A))k∈Zis an Lp-multiplier.

Proof. (ii) → (i). Let B be the operator which maps f ∈ Lp((0, 2π);X) into the function
u ∈ Lp((0, 2π);X) whose kth Fourier coefficient is R(ik, A)f̂(k), i.e.

(3.1) (̂Bf)(k) = R(ik, A)f̂(k) = û(k),

for all k ∈ Z and all f ∈ Lp((0, 2π);X). By the remark following Definition 2.1, B is a
bounded linear operator on Lp((0, 2π);X). Let g ∈ W 1,p((0, 2π);X) ∩ Lp((0, 2π);D(A))
and set h = Bg. Then,

(3.2) ikĥ(k) = R(ik, A)ikĝ(k) = R(ik, A)ĝ′(k),

for all k ∈ Z. Since g′ ∈ Lp((0, 2π);X), there exists w ∈ Lp((0, 2π);X) such that

(3.3) ŵ(k) = R(ik, A)ĝ′(k)

for all k ∈ Z. Hence from (3.2), (3.3) and [5, Lemma 2.1] we obtain h ∈ W 1,p((0, 2π);X).
Note that ĥ(k) ∈ D(A), k ∈ Z since ĥ(k) = R(ik, A)ĝ(k).

From (3.2), it follows that

(3.4) Aĥ(k) = AR(ik, A)ĝ(k) = R(ik, A)ĝ′(k)− ĝ(k)
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for all k ∈ Z. Hence from (3.3), [5, Lemma 3.1] and the closedness of A, we conclude that
h(t) ∈ D(A) and Ah(t) = w(t) − g(t) for almost all t ∈ [0, 2π]. We have proved that B
that maps W 1,p((0, 2π);X) ∩ Lp((0, 2π);D(A)) into itself. Continuity of B follows from
the Closed Graph Theorem since the space W 1,p((0, 2π);X) ∩ Lp((0, 2π);D(A)) embeds
continuously into Lp((0, 2π);X).

Finally, for u ∈ W 1,p((0, 2π);X) ∩ Lp((0, 2π);D(A)) we have

(3.5) (̂Au)(k) = (ikI −A)û(k),

for all k ∈ Z. Hence from (3.1) and [5, Lemma 3.1] we obtain ABu = BAu = u.

(i) → (ii). Let x ∈ X and xn ∈ D(A) such that xn → x. Fix k ∈ Z and let fn(t) = eiktxn

for all n ∈ N and f0(t) = eiktx. Note that f̂n(k) = xn and f̂n(j) = 0 for j 6= k. Clearly
fn → f0 in the Lp-norm. Let un = Bfn. Then we have

ikûn(k)−Aûn(k) = (̂Aun)(k) = ̂(ABfn)(k) = f̂n(k) = xn.

Since B is bounded on Lp((0, 2π);X), un → u0 := Bf0 in the Lp-norm, we conclude that
ûn(k) → û0(k), and

ikû0(k)−Aû0(k) = x.

Hence, for all k ∈ Z, (ikI −A) is surjective.
Let x ∈ D(A) be such that (ikI −A)x = 0, for k ∈ Z fixed. Define u(t) = eiktx. Then,

clearly, u ∈ W 1,p((0, 2π);X) ∩ Lp((0, 2π);D(A)) and u′(t)−Au(t) = Au = 0. Hence

u = BAu = 0,

and therefore x = 0. Since A is closed, we have proved that iZ ⊂ ρ(A).
Next we show that (R(ik, A))k∈Zis an Lp-multiplier. Let f ∈ Lp((0, 2π);X). We observe

that since D(A) = X and 1 ≤ p < ∞, the space W 1,p((0, 2π);X) ∩ Lp((0, 2π);D(A)) is
dense in Lp((0, 2π);X). Hence there exists a sequence fn ∈ W 1,p((0, 2π);X)∩Lp((0, 2π);D(A))
such that fn → f in the Lp-norm. Define

gn = Bfn, n ∈ N.

Then gn ∈ W 1,p((0, 2π);X) ∩ Lp((0, 2π);D(A)) and

g′n −Agn = Agn = ABfn = fn, n ∈ N.

Taking Fourier coefficients, and using the fact that iZ ⊂ ρ(A), we obtain from the above

(3.6) ĝn(k) = (ikI −A)−1f̂n(k)

for all k ∈ Z. Next, we note that {gn}n∈N is a Cauchy sequence in Lp((0, 2π);X). By
continuity of B, there exists g ∈ Lp((0, 2π);X) such that gn → g in the Lp-norm. From
this and using Hölder’s inequality we deduce that ĝn(k) → ĝ(k) and, analogously, f̂n(k) →
f̂(k). Therefore we conclude from (3.6) that ĝ(k) = (ikI − A)−1f̂(k), for all k ∈ Z. The
claim is proved.

When X is a Hilbert space, the result was obtained by Staffans for p = 2. Even in this
case, he could not obtain the full range 1 ≤ p < ∞ since his proof relied on Plancherel’s
theorem which is only valid when X = H is a Hilbert space and p = 2.



6 VALENTIN KEYANTUO AND CARLOS LIZAMA

Indeed, in the case of a Hilbert space, and for 1 < p < ∞, a sequence (Mk)k∈Z ⊂ L(H)
is an Lp−multiplier if

(3.7) sup
k∈Z

(‖Mk‖+ ‖k(Mk+1 −Mk)‖) < ∞.

However, if in addition p = 2, then as a consequence of Plancherel’s theorem,

(3.8) sup
k∈Z

(‖Mk‖) < ∞

is a necessary and sufficient condition for (Mk)k∈Z ⊂ L(H) to be a multiplier.
In a general Banach space, even finite dimensional, this is no longer the case. In [5,

Theorem 1.3] (see also [2]), it is shown that for UMD spaces, R−boundedness of the se-
quences (Mk)k∈Z and (k(Mk+1−Mk))k∈Z is sufficient for (Mk)k∈Z to be an Lp−multiplier
for 1 < p < ∞. In the case of Hilbert spaces, the sufficiency of condition (3.7) is much
older (see e.g. [6, Theorem 6.1.6, p. 135]). It is known that in a Banach space X, if
condition (3.7) always implies that (Mk)k∈Z ⊂ L(X) is an Lp multiplier for 1 < p < ∞,
then X is isomorphic to a Hilbert space (see [5, Section 1]).

If follows from the proof that the concept of mild solution considered here is related to
the one studied by Da Prato and Grisvard in [9]. In that paper, they call strict solutions
(”solutions strictes”) what we call strong solutions and they term strong solutions (”solu-
tions fortes”) what corresponds to our (W 1,p, Lp) mild solutions. In a sense, the present
concept of mild solutions seems more natural. They appear as strong limits (in Lp) of
strong solutions. Such solutions are important in the analysis of nonlinear problems.

It should also be noted that the solution u(·) in Theorem 3.2 depends continuously on
the function f. Specifically, there exists a positive constant C such that

(3.9) ‖u‖Lp((0,2π);X) ≤ C‖f‖Lp((0,2π);X), f ∈ Lp((0, 2π);X).

This is clear from the proof and is otherwise a consequence of Definition 3.1.
As direct consequence of [5, Proposition 3.4] we obtain the following result.

Corollary 3.3. Let X be a Banach space and assume D(A) = X. If Pper(f) is Lp mildly
well-posed then Pper(f) is (W 1,p, Lp) mildly well-posed.

Using Theorem 3.2 and [5, Theorem 3.6] we obtain the following consequence in case A
generates a C0-semigroup.

Corollary 3.4. Let A be the generator of a C0-semigroup (T (t))t≥0 on X and let 1 ≤ p <
∞. Then the following are equivalent.

(i) Pper(f) is Lp mildly well-posed.
(ii) Pper(f) is (W 1,p, Lp) mildly well-posed.
(iii) iZ ⊂ ρ(A) and (R(ik, A))k∈Zis an Lp-multiplier.
(iv) 1 ∈ ρ(T (2π)).

In is important to note that the mild solutions provided by this corollary are continuous.

Remark 3.5. We observe that according [5, Proposition 1.11] condition (ii) in Theorem
3.2 implies that

(iii) iZ ⊂ ρ(A) and (R(ik, A))k∈Z is R-bounded.
However the converse is false. It was shown in [5, Example 3.7]
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4. Mild Solutions for Second Order Equations

This section is concerned with second order inhomogeneous problems of the form

(4.1) P 2
per(f)





u′′(t) = Au(t) + f(t), 0 ≤ t ≤ 2π
u(0) = u(2π),
u′(0) = u′(2π),

in the space Lp
2π(R; X), 1 ≤ p < ∞.

A strong Lp-solution of P 2
per(f) is a function u ∈ W 2,p((0, 2π);X) ∩ Lp((0, 2π);D(A))

such that P 2
per(f) is satisfied t-a.e.

We say that problem P 2
per(f) is strongly Lp well-posed if for each f ∈ Lp((0, 2π);X)

there exists a unique strong Lp−solution of P 2
per(f).

We define the operatorA on Lp((0, 2π);X) by D(A) = W 2,p((0, 2π);X)∩Lp((0, 2π);D(A))
and

Au = u′′ −Au for u ∈ D(A).

Mild solutions of second order problems have been studied in the paper [13] (see also [8]
and [14]). There, two notions of mild solutions where considered. These notions, roughly
speaking, correspond to integrating equation (4.1) once and twice respectively. Here, we
introduce two new notions of mild solutions for (4.1) and establish characterizations which
differentiate between the corresponding well-posedness in terms of Fourier multipliers even
in case of Hilbert spaces. We show that when A generates a strongly continuous cosine
function, then the notions of mild solutions introduced here coincide with those studied
in [13].

Definition 4.1. We say that the problem P 2
per(f) is (W 2,p, Lp) mildly well-posed if there

exists a linear operator B that maps Lp((0, 2π);X) continuously into itself as well as
W 2,p((0, 2π);X) ∩ Lp((0, 2π);D(A)) into itself and which satisfies

ABu = BAu = u

for all u ∈ W 2,p((0, 2π);X) ∩ Lp((0, 2π);D(A)). In this case the function Bf is called
the mild solution of order 2 (or (W 2,p, Lp) mild solution) of P 2

per(f) and B the solution
operator.

Proceeding as in the previous section, one obtains the following analog of Theorem 3.2.

Theorem 4.2. Let A be closed and assume D(A) = X. Let 1 ≤ p < ∞. Then the follow-
ing assertions are equivalent:

(i) P 2
per(f) is (W 2,p, Lp) mildly well-posed.

(ii) {−k2, k ∈ Z} ⊂ ρ(A) and (R(−k2, A))k∈Z is an Lp-multiplier.

Proof. (ii) → (i). For each f ∈ Lp((0, 2π);X), let B be the operator which maps f into
the function u ∈ Lp((0, 2π);X) whose kth Fourier coefficient is R(−k2, A)f̂(k), i.e.

(4.2) (̂Bf)(k) = R(−k2, A)f̂(k) = û(k),
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for all k ∈ Z and all f ∈ Lp((0, 2π);X). Clearly, B is a bounded linear operator on
Lp((0, 2π);X). Let g ∈ W 2,p((0, 2π);X) ∩ Lp((0, 2π);D(A)) and set h = Bg. Then,

(4.3) − k2ĥ(k) = R(−k2, A)(ik)2ĝ(k) = R(−k2, A)ĝ′′(k),

for all k ∈ Z. Since g′′ ∈ Lp((0, 2π);X), there exists w ∈ Lp((0, 2π);X) such that

(4.4) ŵ(k) = R(−k2, A)ĝ′′(k)

for all k ∈ Z. Hence from (4.2), (4.3) and [5, Lemma 2.1] we obtain h ∈ W 2,p((0, 2π);X).
Since h = Bg, from (4.2) and (4.3) it follows that

(4.5) Aĥ(k) = AR(−k2, A)ĝ(k) = −k2R(−k2, A)ĝ(k)− ĝ(k) = R(−k2, A)ĝ′′(k)− ĝ(k)

for all k ∈ Z. Hence from (4.4), [5, Lemma 3.1] and the closedness of A, we conclude that
h(t) ∈ D(A) and Ah(t) = w(t) − g(t) for almost all t ∈ [0, 2π]. We have proved that B
that maps W 2,p((0, 2π);X) ∩ Lp((0, 2π);D(A)) into itself. Continuity of B follows from
the Closed Graph Theorem since the space W 2,p((0, 2π);X) ∩ Lp((0, 2π);D(A)) embeds
continuously into Lp((0, 2π);X).

Finally, for u ∈ W 2,p((0, 2π);X) ∩ Lp((0, 2π);D(A)) we have

(4.6) (̂Au)(k) = (−k2I −A)û(k),

for all k ∈ Z. Hence from (4.2) and [5, Lemma 3.1] we obtain ABu = BAu = u.

(i) → (ii). We shall only give a sketch of the proof since it is analogous to the proof of
the corresponding implication in Theorem 3.2. For x ∈ X, k ∈ Z, fixed, we let xn → x
where xn ∈ D(A), n ∈ N ∪ {0}. Set fn(t) = eiktxn and f0(t) = eiktx. One first establishes
that {−k2, k ∈ Z} ⊂ ρ(A) and then using an approximation procedure, one proves that
(R(−k2, A))k∈Z is an Lp-multiplier. Note that B̂f(k) = R(−k2, A)f̂(k), k ∈ Z.

Suppose A generates a strongly continuous cosine function C(t) and denote by S(t) the
associate sine function. In what follows, we shall make use of the set

E = {x ∈ X : t → C(t)x is once continuously differentiable },
which under the norm ||x||E = ||x|| + sup0≤t≤1 ||AS(t)x|| is a Banach space (cf. [11] and
[3, Section 3.14 ]).

Observe that if (x, y) ∈ D(A) × E and f is continuously differentiable on [0, 2π], then
the formula

(4.7) u(t) = C(t)x + S(t)y +
∫ t

0
S(t− s)f(s)ds,

defines a strong (classical) solution of (4.1) (see e.g. Travis and Webb [16, Proposition
2.4] or [3, Chapter 3] or [11]).

Using [13, Theorem 4.6] one immediately has the following corollary to Theorem 4.2.

Corollary 4.3. Let A be the generator of a strongly continuous cosine function C(t) and
denote by S(t) the associated sine function. For 1 ≤ p < ∞ the following are equivalent:

(i) P 2
per(f) is (W 2,p, Lp) mildly well-posed.
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(ii) For any f ∈ Lp
2π(R; X) there exists a unique (x, y) ∈ X ×X such that u given by

(4.7) is differentiable at t = 0 and 2π-periodic, i.e. u(0) = u(2π) and u′(0) = u′(2π).

(iii) S(2π) ∈ B(X, E) is invertible.

In the context of Hilbert spaces, using [13, Corollary 4.7] we have the following.

Corollary 4.4. Let H be a Hilbert space and let A be the generator of a strongly continuous
cosine family C(t). For 1 ≤ p < ∞ the following are equivalent:

(i) P 2
per(f) is (W 2,p, Lp) mildly well-posed.

(ii) {−k2 : k ∈ Z} ⊆ ρ(A) and supk∈Z ||R(−k2; A)|| < ∞.

We introduce the following definition of mild solution to equation (4.1).

Definition 4.5. We say that the problem P 2
per(f) is (W 2,p,W 1,p) mildly well-posed if

there exists a linear operator B that maps Lp((0, 2π);X) continuously into itself with range
in W 1,p((0, 2π);X), as well as W 2,p((0, 2π);X) ∩ Lp((0, 2π);D(A)) into itself and which
satisfies

ABu = BAu = u

for all u ∈ W 1,p((0, 2π);X) ∩ Lp((0, 2π);D(A)). In this case the function Bf is called the
mild solution of order 1 (or (W 2,p,W 1,p) mild solution) of P 2

per(f) and B the solution
operator.

Observe that this new notion of mild solutions is stronger than the previous one, namely
the (W 2,p, Lp) mild solution. This will be apparent in what follows.

When X and Y are Banach spaces, we write X ↪→ Y to indicate that X is continuously
embedded into Y. The assertions contained in the following lemma are well-known.

Lemma 4.6. Let X, Y and Z be Banach spaces such that Y ↪→ Z. Then the following
hold:

(i) If the linear operator T : X −→ Y is continuous, then T : X −→ Z is continuous.

(ii) If the linear operator T : X −→ Z is continuous and T (X) ⊂ Y, then T : X −→ Y
is continuous.

Proof. (i) follows by direct verification while (ii) is an immediate consequence of the
Closed Graph Theorem.

In view of the lemma, in Definition 4.5, we can instead require that the solution oper-
ator B map Lp((0, 2π);X) into W 1,p((0, 2π);X) continuously. One obtains the following
result which, together with the above theorems, recognizes the multipliers establishing
the differences between strong solutions, mild solutions of order one and mild solutions of
order two.
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Theorem 4.7. Let A be closed and assume D(A) = X. Let 1 < p < ∞. Then the follow-
ing assertions are equivalent:

(i) P 2
per(f) is (W 2,p,W 1,p) mildly well-posed.

(ii) {−k2, k ∈ Z} ⊂ ρ(A) and (ikR(−k2, A))k∈Z is an Lp-multiplier.

Proof. (ii) → (i). Observe that if (ikR(−k2, A))k∈Z is an Lp-multiplier, then so is
(R(−k2, A))k∈Z. Again from the proof of Theorem 4.2, we have that from (ii) it follows that
we can construct a solution operator B. It remains to show that B maps Lp((0, 2π);X) into
W 1,p((0, 2π);X). Since (ikR(−k2, A))k∈Z is an Lp-multiplier, for any f ∈ Lp((0, 2π);X),
we can find a function w ∈ Lp((0, 2π);X) such that ikR(−k2, A)f̂(k) = ŵ(k), k ∈ Z.

Recall that B̂f(k) = R(−k2, A)f̂(k), k ∈ Z. Hence, ikB̂f(k) = ŵ(k), k ∈ Z. Application
of [3, Lemma 2.2] yields that Bf ∈ W 1,p((0, 2π);X).

(i) → (ii). From the definition of well-posedness and Theorem 4.2, we see that (i) implies
that {−k2, k ∈ Z} ⊂ ρ(A) and (R(−k2, A))k∈Z is an Lp-multiplier. We have to show that
(ikR(−k2, A))k∈Z is an Lp-multiplier. Let f ∈ Lp((0, 2π);X). Since B maps Lp((0, 2π);X)
into W 1,p((0, 2π);X) and there exists g ∈ W 1,p((0, 2π);X) such that B̂f(k) = ĝ(k) =
R(−k2, A)f̂(k), k ∈ Z, it follows from [5, Lemma 2.1], Definition 2.1 and the relation
ĝ′(k) = ikĝ(k) = ikR(−k2, A)f̂(k), k ∈ Z that (ikR(−k2, A))k∈Z is an Lp-multiplier.

Remark 4.8. Observe that we have the following string of implications

Strongly Lp well-posed =⇒ (W 2,p,W 1,p) mildly well-posed =⇒ (W 2,p, Lp) mildly well-posed.

Finally, from [13, Theorem 5.3 and Corollary 5.4] we obtain the following corollaries.

Corollary 4.9. Let A be the generator of a strongly continuous cosine family (C(t))t∈R
and let 1 ≤ p < ∞. Then the following assertions are equivalent:

(i) P 2
per(f) is (W 2,p,W 1,p) mildly well-posed.

(ii) For any f ∈ Lp(0, 2π;X) there exists a unique (x, y) ∈ E ×X such that u given by
(4.7) is of class C1 and 2π-periodic, i.e. u(0) = u(2π) and u′(0) = u′(2π).

(iii) I − C(2π) ∈ B(X;X) is invertible.

In the context of Hilbert spaces, we have:

Corollary 4.10. Let H be a Hilbert space and A the generator of a strongly continuous
cosine family C(t) and let 1 ≤ p < ∞. Then the following are equivalent:

(i) P 2
per(f) is (W 2,p,W 1,p) mildly well-posed.

(ii) {−k2 : k ∈ Z} ⊆ ρ(A) and supk∈Z ||kR(−k2;A)|| < ∞.

Of course these two assertions are equivalent to assertion (ii) of the previous corollary.
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5. Fractional differentiation and well-posedness

Let us consider the first order problem Pper(f). We note from an examination of the
proof of Theorem 3.2 that if in the definition of well-posedness (Definition 3.1) we further
require that B map Lp((0, 2π);X) into W 1,p((0, 2π);X), one can show that this is equiv-
alent to say that {ik}k∈Z ⊂ ρ(A) and (ikR(ik, A))k∈Z is an Lp multiplier. This shows that
strong well-posedness (see Section 1 and [5, Theorem 2.3]) fits well into our framework.
More precisely we have:

Theorem 5.1. Let A be a closed and densely defined linear operator on X and let 1 ≤
p < ∞. The following assertions are equivalent:

(i) Problem Pper(f) is (W 1,p, Lp) mildly well-posed and the solution operator B maps
Lp((0, 2π);X) continuously into itself with range in W 1,p((0, 2π); X)

(ii) {ik}k∈Z ⊂ ρ(A) and (ikR(ik, A))k∈Z is an Lp-multiplier.

Remark 5.2. Observe that if Pper(f) is strongly Lp well-posed then condition (i) is satisfied.
The converse is valid in UMD spaces by [5, Theorem 2.3].

Likewise, for the second order problem P 2
per(f), we have the following proposition (Com-

pare [5, Theorem 6.1] and [13, Theorem 2.1 (with α = 0 )]). See section 4 to recall the
definition of strongly Lp well-posedness for problem P 2

per(f).

Theorem 5.3. Let A be a closed and densely defined linear operator on X and let 1 ≤
p < ∞. The following assertions are equivalent:

(i) Problem P 2
per(f) is (W 2,p, Lp) mildly well-posed and the solution operator B maps

Lp((0, 2π);X) continuously into itself with range in W 2,p((0, 2π); X)

(ii) {−k2}k∈Z ⊂ ρ(A) and (k2R(−k2, A))k∈Z is an Lp multiplier.

Remark 5.4. Note that if P 2
per(f) is strongly Lp well-posed then condition (i) is satisfied.

The converse is valid in UMD spaces, which follows by the proof of [5, Theorem 6.1] (see
also [13, Theorem 2.11]).

In UMD spaces, if 1 < p < ∞, the multiplier conditions (ii) in Theorem 5.1 and
Theorem 5.3 are equivalent respectively to the R−boundedness of (ikR(ik, A))k∈Z and
(k2R(−k2, A))k∈Z (see [5]).

Comparing with [5] and [13], the difference is that here, we require the domain of A to
be dense in X (see however Remark 5.8 below). And here we employ different proofs.

The above suggests that one can consider a one parameter family of concepts of well-
posedness. In what follows, we shall restrict ourselves to the case of UMD spaces. So, let
X be a UMD space. For 1 < p < ∞ and 0 ≤ α, we define the space Hα,p((0, 2π); X) as:

Hα,p((0, 2π); X) = {f ∈ Lp((0, 2π);X), ∃g ∈ Lp((0, 2π);X) such that ĝ(k) = |k|αf̂(k), k ∈ Z}.
In the case of Hilbert spaces, this situation was studied by O. Staffans [15]. We note

due to the UMD property (more precisely the continuity of the Hilbert transform on
Lp(0, 2π);X), we have

(5.1) Wm,p((0, 2π);X) = Hm,p((0, 2π); X), for 1 < p < ∞ and m ∈ N ∪ {0}
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(see for example [17, Chapter III], [1] and for the relationship with intermediate spaces,
see [7, Chapter IV, especially Section 4.4, p.272]). Now we give the definition of (α, p)
well-posedness for Pper(f).

Definition 5.5. We say that the problem Pper(f) is (α, p) mildly well-posed if there ex-
ists a linear operator B that maps Lp((0, 2π);X) continuously into itself with range in
Hα,p((0, 2π); X), as well as W 1,p((0, 2π);X) ∩ Lp((0, 2π);D(A)) into itself and which
satisfies

ABu = BAu = u

for all u ∈ W 1,p((0, 2π);X) ∩ Lp((0, 2π);D(A)).

Then we have the following.

Theorem 5.6. Let X be a UMD space and 0 ≤ α ≤ 1. Let A be closed linear operator
and assume D(A) = X and 1 ≤ p < ∞. Then the following assertions are equivalent:

(i) Pper(f) is (α, p) mildly well-posed.

(ii) iZ ⊂ ρ(A) and (|k|αR(ik, A))k∈Zis an Lp-multiplier.

Proof. The proof is a modification of the proof of Theorem 3.2 and we omit it.

In a similar manner, we can deal with the second order problem P 2
per(f). For the def-

inition of (α, p) mild well-posedness, we now modify Definition 4.5 (or Definition 4.1 for
that matter) to require that B map Lp((0, 2π);X) into H2α,p((0, 2π);X) for 0 ≤ α ≤ 1.

The result is the following theorem.

Theorem 5.7. Let X be a UMD space and 0 ≤ α ≤ 1. Let A be closed linear operator
and assume D(A) = X and 1 ≤ p < ∞. Then the following assertions are equivalent:

(i) P 2
per(f) is (α, p) mildly well-posed.

(ii) {−k2}k∈Z ⊂ ρ(A) and (|k|2αR(−k2, A))k∈Zis an Lp-multiplier.

In UMD spaces, the case α = 1 and 1 < p < ∞ in Theorem 5.6 is Theorem 5.1. The
reason is the continuity of the Hilbert transform on Lp((0, 2π);X). Clearly, Theorem 5.7
with α = 1 corresponds to Theorem 5.3. On the other hand, if α = 1/2 in Theorem 5.7,
then we see that Theorem 5.7 corresponds to Theorem 4.7.

Corresponding results may be stated in general Banach spaces. However, given the
recently proved theorems on operator valued Lp multipliers in UMD spaces (see [5], [10]
and [18]), it seems reasonable to single out this family of spaces. Observe that the spaces
Hα,p((0, 2π); X) were used in [5, Section 4] in conjunction with Sobolev embedding the-
orems to obtain continuity of mild solutions, the latter however being defined differently
than ours.

For α = 0, the first order problem admits continuous mild solutions if we assume that
A generates a strongly continuous semigroup. In the case of the second order problem,
continuous mild solutions are obtained under the condition that A be the generator of a
strongly continuous cosine function. We refer to [5] and [13] respectively.
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Remark 5.8. Suppose X is a reflexive Banach space. Let A be a closed linear operator
with domain and range in X. Then, as is well known, if {(λn)} ⊂ ρ(A), lim

n→∞ |λn| = ∞ and

(λnR(λn, A)) is bounded, then D(A) = X. Therefore, when the condition (ii) in Theorem
5.1 or Theorem 5.3 is satisfied in a reflexive Banach space (in particular a UMD space),
the closed operator A is automatically densely defined.

In order to justify the reasonableness of the restriction on α (i.e. 0 ≤ α ≤ 1) in the
previous theorems, we establish the following proposition. It is probably well known but
we do not have a ready reference.

Proposition 5.9. Let X be a Banach space (X 6= {0}) and A : D(A) ⊂ X → X be a
closed linear operator. Suppose that (λn)n∈N ⊂ ρ(A) and lim

n→∞ |λn| = ∞. Then for every

ε > 0, (|λn|1+εR(λn, A)) is unbounded.

Proof. Suppose to the contrary that (|λn|1+εR(λn, A)) is bounded, that is, there exists
M > 0 such that |λn|1+ε‖R(λn, A))‖ ≤ M, n ∈ N. Let x ∈ D(A). Then there exist µ ∈
ρ(A) and y ∈ X such that x = R(µ,A)y. Clearly we may assume that |µ| < |λn|, n ∈ N.

Using the resolvent equation, we have

|λn|1+εR(λn, A)x = |λn|1+εR(λn, A)R(µ,A)y

=
|λn|1+ε

µ− λn
(R(λn, A)y −R(µ,A)y)

It follows that |λn|1+ε

|µ−λn| ‖R(λn, A)y −R(µ,A)y‖ ≤ M‖x‖ and thus

|λn|1+ε

|µ− λn|‖R(µ,A)y‖ ≤ M‖x‖+
|λn|1+ε

|µ− λn|‖R(λn, A)y‖ ≤ M(‖x‖+
‖y‖

|µ− λn|)

for all n ∈ N. Obviously, since lim
n→∞ |λn| = ∞, this is only possible if R(µ,A)y = 0 and

thus y = 0,that is x = 0.

In the light of this proposition, we see that the range of the parameter α in the last
two theorems is the right one. Moreover, in view of the fact that every Fourier multiplier
is bounded, we can say that the condition (ii) of Theorem 5.1 or Theorem 5.3 are the
strongest possible.

6. Application to semi-linear equations in Hilbert spaces

Let X be a Hilbert space and denote by

Z := W 2,p((0, 2π);X) ∩ Lp((0, 2π);D(A)).

In this section we consider the semilinear problem of second order

(6.1) u′′(t) = Au(t) + f(t, u(t)), t ∈ [0, 2π],

where f is a continuous mapping of Lp((0, 2π);X) into itself.
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We say that a closed linear operator A belongs to the class K2(X) if

(6.2) {−k2 : k ∈ Z} ⊆ ρ(A) and sup
k∈Z

||k2R(−k2; A)|| < ∞.

Define the Nemytskii’s superposition operatorN : Z → Lp((0, 2π);X) given byN (v)(t) =
f(t, v(t)) and the bounded linear operator

B := A−1 : Lp((0, 2π);X) → Z

by B(g) = u where u is the unique solution of the linear problem

u′′(t) = Au(t) + g(t).

Then, in order to obtain strong solutions for (6.1), i.e. u ∈ Z such that (6.1) is satisfied,
we have to show that the operator H : Z → Z defined by H = BN has a fixed point.

For example, if we assume that B is a compact operator, and we suppose that for some
M > 0,

(6.3) sup
‖u‖≤M

‖N (u)‖Lp((0,2π);X) ≤ M/‖B‖,

then one may apply Schauder’s fixed point theorem to H in the ball {u ∈ Lp((0, 2π);X) :
‖u‖ ≤ M} to get existence of a strong solution for (6.1). This way one obtains the
existence of solutions on [0, 2π]. More precisely, by applying the preceding argument, one
proves the following result in Hilbert spaces.

Theorem 6.1. Let H be a Hilbert space, and suppose A ∈ K2(H). Assume that the unit
ball of D(A) is compact in H. Let f be given such that (6.3) is satisfied. Then the equation
(6.1) has a strong solution, with ‖u‖L2((0,2π);H) ≤ M.

Proof. Since A ∈ K2(H), for each K ∈ Z we can define operators BK : L2((0, 2π);H) →
L2((0, 2π);H) by

(6.4) (BKg)(t) =
K∑

k=−K

R(−k2, A)ĝ(k)eikt.

Since the unit ball of D(A) is compact in H, for each K, the operator BK is a finite sum
of compact operators, hence compact. Now, because of (6.2), as K → ∞, BK converges
in norm to B, so B is compact. The conclusion of the theorem is achieved by applying
Schauder’s fixed point theorem to the equation u = Bf(u) in {u ∈ Z : ‖u‖ ≤ M}.

Remark 6.2. Note that if P 2
per(f) is strongly Lp well-posed then A ∈ K2(H). Indeed, we

have by (ii) in Theorem 5.3 that {−k2 : k ∈ Z} ⊆ ρ(A). Moreover, by Remark 5.4 and
the comments following Definition 2.1, we know that

(6.5) sup
k∈Z

‖k2R(−k2, A)‖ < ∞.

On the other hand, we also obtain A ∈ K2(H) under the weaker condition (i) in Theorem
5.3.
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We can also obtain mild solutions for the semilinear problem (6.1) by relying instead
on Corollary 4.10. Here, we take

Z = W 1,p((0, 2π);X).

We say that a closed linear operator A belongs to the class K1(X) if A is the generator
of a strongly continuous cosine family C(t) on X and satisfies

{−k2 : k ∈ Z} ⊆ ρ(A) and sup
k∈Z

||kR(−k2;A)|| < ∞.

If A belongs to the class K1(X) then, by Corollary 4.10, there exists a bounded linear
operator

B : Lp((0, 2π);X) → Z.

We say that u ∈ Z is a (W 2,p,W 1,p) mild solution for (6.1) if u is a fixed point of the
equation

u = Bf(u)

With the same arguments as above, we arrive at:

Theorem 6.3. Let H be a Hilbert space, and A ∈ K1(H). Assume that the unit ball of
D(A) is compact in H. Let f be given such that (6.3) is satisfied. Then equation (6.1)
has a (W 2,p,W 1,p) mild solution, with ‖u‖L2((0,2π);H) ≤ M.
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