
FOURIER MULTIPLIERS AND INTEGRO-DIFFERENTIAL
EQUATIONS IN BANACH SPACES

VALENTIN KEYANTUO AND CARLOS LIZAMA

Abstract. Operator-valued Fourier multiplier theorems are used to

establish maximal regularity results for an integro-differential equation

with infinite delay in Banach spaces. Results are obtained under general

conditions for periodic solutions in the vector valued Lebesgue and Besov

spaces. The latter scale includes in particular the Hölder spaces Cα, 0 <

α < 1.

1. Introduction

We consider the following integro-differential equation with infinite delay

(1.1)





u′(t) = Au(t) +
∫ t

−∞
a(t− s)Au(s)ds + f(t), 0 ≤ t ≤ 2π

u(0) = u(2π).

We will examine this problem in various spaces of 2π - periodic vector-

valued functions: Lp(0, 2π; X) (Lebesgue-Bochner spaces), Cα(0, 2π; X)

(Hölder spaces), Bs
pq(0, 2π; X) (Besov spaces). Here X is a Banach space,

A : D(A) ⊂ X → X is a (not necessarily densely defined) closed linear

operator and f is an X−valued function defined on [0, 2π]. We note that

equation (1.1) may be rewritten as
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(1.2)





u′(t) = Au(t) +
∫ ∞

0
a(s)Au(t− s)ds + f(t), 0 ≤ t ≤ 2π

u(0) = u(2π).

Equations of this kind arise, for example, in the study of heat flow in

materials of fading memory type as well as some equations of population

dynamics. For more information on this subject see the papers [8, 15, 11] and

the monograph [16] (particularly Chapter II, Section 9) and the references

therein. We also note the recently published paper [14].

Da Prato and Lunardi [11] studied equation (1.1) (see also Da Prato-

Lunardi [12], Clément-Da Prato [9]) under several conditions on A and a(·).

In particular, among other hypotheses, they assume that A generates an

analytic semigroup. We note, however, that these authors also consider

more general operator valued kernels and non periodic problems.

In this work we rely on the recent papers by Arendt-Bu [3], Arendt-Bu [5],

Arendt-Batty-Bu [4] where the above problem is studied with a(·) ≡ 0. In

these papers, the authors establish operator-valued Fourier multiplier theo-

rems and apply them to study maximal regularity of the classical abstract

non homogeneous Cauchy problem

(1.3)





u′(t) = Au(t) + f(t), 0 ≤ t ≤ 2π

u(0) = u(2π).

One remarkable fact is that in the context of resolvents of closed linear oper-

ators in Banach spaces, Lp-multipliers can be completely characterized. See

for example [3, Theorem 2.3] and [5, Theorem 4.1] for a precise formulation
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of this fact. This is in contrast to the general situation where, even in the

scalar case, a complete characterization exists only for p = 1 and p = 2.

Our case is more difficult to handle due to the complicated structure of

the resolvent. We are able to establish maximal regularity in all the above

spaces: Lebesgue-Bochner, Hölder and Besov spaces. In the case of Hölder

spaces, which was considered by Da Prato-Lunardi [11], we obtain a com-

plete and very simple characterization of maximal regularity only in terms

of boundedness of {bk(bk−A)−1}k∈Z where bk =
ik

1 + ã(ik)
and ã(λ) denotes

the Laplace transform of a(·). The conditions that we impose on the kernel

a(·) are satisfied by a large class of functions. For example, the Analytic

Representation Theorem ([2, Theorem 2.6.1 ]) gives a characterization of a

subclass of functions which fit into our framework. Moreover, the important

example a(t) = be−ct with c > 0 and b ∈ R is shown to satisfy our assump-

tions. For this and more examples, see the monograph [16] by J. Prüss,

especially Chapter II, section 9 and Chapter III, section 13.

We remark that in the case where a ≡ 0, which corresponds to problem

(1.3), we recover the results of [3, Theorem 2.3], [5, Theorem 4.1] and in

particular [4, Theorem 4.2].

Compared with the papers [11] and [12], our assumptions are weaker. We

do not make any parabolicity assumption on the operator A, not even that

A generates a semigroup.

In the theory of Volterra integral equations in Banach spaces, the notion

of k-regular kernels plays a fundamental rôle (see e.g. Prüss [16, Theorem

3.1, p.73] and [16, Definition 3.3, p.69]). In our analysis, we introduce a
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discrete version of this concept (see Definition 3) and use it to obtain a

characterization of multipliers in terms of boundedness of the resolvent.

The present paper is organized as follows: In section 2, we consider well-

posedness of (1.1) in the Lebesgue Bochner spaces Lp
2π(R;X). Here the main

result involves UMD-spaces and R-boundedness. The third section is de-

voted to maximal regularity in Cα(0, 2π;X) and Bs
pq(0, 2π; X). In each case,

the appropriate notion of strong solution is defined.

2. Maximal Regularity on Lp(0, 2π; X): R-boundedness.

For a function f ∈ L1(0, 2π; X), we denote by f̂(k), k ∈ Z the k-th Fourier

coefficient of f :

f̂(k) =
1
2π

∫ 2π

0
e−k(t)f(t)dt,

where ek(t) = eikt, t ∈ R. Given a ∈ L1
loc(R+) and u : [0, 2π] → X ( extended

by periodicity to R) we obtain, under appropriate assumptions on a(t), that

for F (t) =
∫ t
−∞ a(t− s)u(s)ds,

(2.1) F̂ (k) = ã(ik)û(k), k ∈ Z

where ã(λ) =
∫∞
0 e−λta(t)dt denotes the Laplace transform of f . We shall

return to this point later.

Let X, Y be Banach spaces. We denote by L(X, Y ) the set of all bounded

linear operators from X to Y . When X = Y , we write simply L(X). For a

linear operator A on X, we denote its resolvent set by ρ(A).

We begin with some preliminaries about operator-valued Fourier multi-

pliers.
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Definition 2.1. For 1 ≤ p ≤ ∞, we say that a sequence {Mk}k∈Z ⊂

L(X, Y ) is an Lp-multiplier, if for each f ∈ Lp(0, 2π; X) there exists u ∈

Lp(0, 2π; Y ) such that

û(k) = Mkf̂(k) for all k ∈ Z.

It follows from the uniqueness theorem of Fourier series that u is uniquely

determined by f .

For j ∈ N, denote by rj the j-th Rademacher function on [0, 1], i.e. rj(t) =

sgn(sin(2jπt)). For x ∈ X we denote by rj ⊗ x the vector valued function

t → rj(t)x.

Definition 2.2. A family T ⊂ L(X, Y ) is called R-bounded if there exists

cq ≥ 0 such that

(2.2) ||
n∑

j=1

rj ⊗ Tjxj ||Lq(0,1;X) ≤ cq||
n∑

j=1

rj ⊗ xj ||Lq(0,1;X)

for all T1, ..., Tn ∈ T, x1, ..., xn ∈ X and n ∈ N, where 1 ≤ q < ∞. We

denote by Rq(T) the smallest constant cq such that (2.2) holds.

The concept of R-boundedness was introduced by Bourgain [6]. It plays

a fundamental role in recent work by Clément-de Pagter-Sukochev-Witvliet

[10], Weis [18, 19], Clément- Prüss [9] and Arendt-Bu [3]. It is clear from

the definition that any R-bounded family is bounded. The converse of this

assertion holds only in spaces which are isomorphic to Hilbert spaces. For

more details, we refer to Arendt-Bu [3, 4].

Remark 2.3.
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a) Let S,T ⊂ L(X) be R-bounded sets, then S ·T := {S · T : S ∈ S, T ∈

T} is R- bounded and

Rp(S ·T) ≤ Rp(S) ·Rp(T).

b) Also, each subset M ⊂ L(X) of the form M = {λI : λ ∈ Ω} is R-

bounded whenever Ω ⊂ C is bounded (I denotes the identity operator on

X). This follows from Kahane’s inequality (see [3, Lemma 1.7]). We shall

use this remark frequently.

The following theorem, due to Arendt-Bu [3, Theorem 1.3], is the dis-

crete analogue of the operator-valued version of Mikhlin’s theorem. It is

concerned with UMD spaces. Examples of UMD spaces include Hilbert

spaces, Lp(Ω, µ), 1 < p < ∞, Lp(Ω, µ; X), 1 < p < ∞ when X is a UMD

space and the Schatten-von Neumann classes Cp(H), 1 < p < ∞ of oper-

ators on a Hilbert space. Every UMD space is superreflexive. The spaces

L1(Ω, µ), L∞(Ω, µ) (if infinite dimensional) and Cα([0, 2π]; X) are not re-

flexive and therefore not UMD. More information on UMD spaces can be

found in Amann [1], Bourgain [6], De Pagter-Witvliet [13] and Prüss [16].

Theorem 2.4. (Operator-valued Marcinkiewicz multiplier theorem)

Let X,Y be UMD-spaces and Mk ∈ L(X, Y )(k ∈ Z). If the sets {Mk}k∈Z

and {k(Mk+1 −Mk)}k∈Z are R-bounded, then {Mk}k∈Z is an Lp-multiplier

for 1 < p < ∞.

Remark 2.5.
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If X = Y is a UMD space and Mk = mkI with mk ∈ C, then the

condition

sup
k
|mk|+ sup

k
|k(mk+1 −mk)| < ∞

implies that the set {Mk}k∈Z is an Lp-multiplier. (see [3] or [1, Theorem

4.4.3]).

The following concept of k-regularity (k = 1, 2) is the discrete analog for

the notion of k-regularity introduced by Prüss [16, Chapter I, Section 3.2].

Definition 2.6. A sequence {ak}k∈Z ⊂ C\{0} is called

a) 1-regular if the sequence {k(ak+1 − ak)
ak

}k∈Z is bounded.

b) 2-regular if it is 1-regular and the sequence {k2(ak+1 − 2ak + ak−1)
ak

}k∈Z

is bounded.

Example 2.7.

It is not difficult to see that the sequence ak = b
ik+c , where b ∈ R and

c > 0, is 2-regular.

Proposition 2.8. Let A be a closed linear operator defined on the Banach

space X. Let {ak}k∈Z ∈ C\{0} be a 1-regular sequence such that { 1
ak
}k∈Z ⊂

ρ(A). Then the following assertions are equivalent

(i) {(I − akA)−1}k∈Z is an Lp-multiplier, 1 < p < ∞.

(ii) {(I − akA)−1}k∈Z is R-bounded.

Proof. By [3, Proposition 1.11 ] it follows that (i) implies (ii). Conversely,

define Mk = (I −akA)−1. By Theorem 2.4 is sufficient to prove that the set
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{k(Mk+1 −Mk)}k∈Z ⊂ L(X) is R-bounded. In fact,

k(Mk+1 −Mk) = k[(I − ak+1A)−1 − (I − akA)−1]

= k(I − ak+1A)−1[(I − akA)− (I − ak+1A)](I − akA)−1

= k(I − ak+1A)−1[ak+1 − ak]A(I − akA)−1

= k(ak+1 − ak)(I − ak+1A)−1 1
ak

[(I − akA)−1 − I]

=
k(ak+1 − ak)

ak
(I − ak+1A)−1[(I − akA)−1 − I]

hence the result follows from Remark 2.3.

¤

Let a ∈ L1
loc(R+) and suppose that ã(ik) exists for all k ∈ Z. We assume

that λ → ã(λ) admits an extension to a sector containing the imaginary

axis, and still denote this extension by ã. For example we may assume that

a is of subexponential growth and 1-regular (in the sense on [16]). For the

properties of Laplace transforms of such functions we refer to Prüss [16,

Chapter 2, Lemma 8.1]. Another class of interest is the one characterized

in [2, Theorem 2.6.1], but our results apply to a more general class as

Example 2.16 (1) below shows. Other interesting conditions are considered

in Da Prato-Lunardi [12, Section 5]. We adopt throughout the following

notations:

ck = ã(ik);(2.3)

bk =
1
ak

=
ik

1 + ã(ik)
for all k ∈ Z\{0}; b0 = 0,(2.4)

and R(λ,A) = (λ−A)−1 whenever λ ∈ ρ(A).
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As announced in the introduction, we shall frequently identify the spaces

of (vector or operator-valued) functions defined on [0, 2π] to their periodic

extensions to R. Thus, in this section, we consider the space Lp
2π(R; X) (de-

noted also Lp(0, 2π; X), 1 ≤ p ≤ ∞) of all 2π-periodic Bochner measurable

X-valued functions f such that the restriction of f to [0, 2π] is p-integrable.

The following hypothesis will be fundamental for our purposes.

(H1) {ck}k∈Z , {k(ck+1−ck)}k∈Z and { 1
ck + 1

}k∈Z are bounded sequences.

Note that (H1) implies that {bk} is 1-regular. This follows from the

identity

k
(bk+1 − bk)

bk
=

1
1 + ck+1

[(1 + ck)− k(ck+1 − ck)].

Lemma 2.9. Let X be a UMD space. Under assumption (H1), the se-

quences {(1+ck)I}k∈Z , { (1+ck)
ik I}k∈Z\{0} and {( 1

1+ck
)I}k∈Z are Lp-multipliers.

Proof. We have

k(
1

1 + ck+1
− 1

1 + ck
) = k

(ck − ck+1)
(1 + ck+1)(1 + ck)

and

ik(ak+1 − ak) =
1

k + 1
[k(ck+1 − ck)− (1 + ck)].

Hence the result follows from Remark 2.5.

¤
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In what follows, we denote by Ha,p
per the space of all u ∈ Lp(0, 2π;X) for

which there exists v ∈ Lp(0, 2π;X) such that v̂(k) =
ik

1 + ã(ik)
û(k) for all

k ∈ Z. If a ≡ 0 we denote H1,p
per := H0,p

per. (cf. [3, Section 2] ).

Remark 2.10.

Under assumption (H1) we have, by Lemma 2.9, that 1+ ck and 1
1+ck

are

Lp - multipliers and hence H1,p
per = Ha,p

per.

Definition 2.11. A function u ∈ Ha,p
per is called a strong Lp- solution of

(1.1) if u(t) ∈ D(A) and equation (1.1) holds for almost all t ∈ [0, 2π].

The following is the main result of this section. Recall that bk = ik
1+ck

,

where ck = ã(ik).

Theorem 2.12. Let X be a UMD space and A : D(A) ⊂ X → X be a

closed linear operator. Assume that the sequence {ck}k∈Z satisfies (H1).

Then the following assertions are equivalent for 1 < p < ∞ :

(i) For every f ∈ Lp
2π(R; X) there exists a unique strong Lp- solution of

(1.1).

(ii) {bk}k∈Z ⊆ ρ(A) and {bk(bkI −A)−1)}k∈Z is an Lp-multiplier.

(iii) {bk}k∈Z ⊆ ρ(A) and {bk(bkI −A)−1}k∈Z is R-bounded.

Proof. (i) =⇒ (ii). Follows the same lines as the proof of [3, Theorem

2.3] . The key point is to take advantage of the equation (2.1) and Lemma

2.9. Let k ∈ Z and y ∈ X. Define f = ek⊗y. There exists u ∈ Ha,p
per such that

u′(t) = Au(t)+
∫ t
−∞ a(t−s)Au(s)ds+f(t). Taking Fourier transforms on both

sides we obtain that û(k) ∈ D(A) and ikû(k) = Aû(k)+ã(ik)Aû(k)+f̂(k) =
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Aû(k)+ã(ik)û(k)+y. Thus, (ikI−(1+ã(ik))A) is surjective. Let x ∈ D(A).

If (ikI−(1+ã(ik))A)x = 0, that is Ax =
ik

1 + ã(ik)
x = bkx then u(t) = eiktx

defines a periodic solution of u′(t) = Au(t) +
∫ t
−∞ a(t − s)Au(s)ds = 0. In

fact,

Au(t) +
∫ t

−∞
a(t− s)Au(s)ds = eiktAx +

∫ t

−∞
a(t− s)eiksAxds

= eiktAx +
∫ ∞

0
a(s)eik(t−s)Axds

= eiktAx + eikt

∫ ∞

0
a(s)e−iksdsAx

= eiktAx + eiktã(ik)Ax

= eikt(1 + ã(ik))Ax

= ikeiktx = u′(t).

Hence u = 0 by the assumption of uniqueness and thus x = 0. Since A is

closed, we conclude that {bk}k∈Z ⊂ ρ(A).

Next we show that {(I − akA)−1}k∈Z is an Lp- multiplier. Let f ∈

Lp(0, 2π; X). By hypothesis, there exists a unique u ∈ Ha,p
per such that

u′(t) = Au(t) +
∫ t
−∞ a(t − s)Au(s)ds + f(t). Taking Fourier transforms,

we deduce that û(k) ∈ D(A) and (ikI − (1 + ã(ik))A)û(k) = f̂(k) or

ikak( 1
ak

I −A)û(k) = f̂(k) for all k ∈ Z. Hence,

(2.5) ikû(k) = (I − akA)−1f̂(k) for all k ∈ Z.

Note that by definition of Ha,p
per there exists v ∈ Lp(0, 2π; X) such that

(1 + ã(ik))v̂(ik) = ikû(k) = (I − akA)−1f̂(k) for all k ∈ Z. Hence, to finish

the proof it is sufficient to prove that the set {1 + ã(ik)}k∈Z = {1 + ck}k∈Z



12 VALENTIN KEYANTUO AND CARLOS LIZAMA

satisfies Mikhlin’s conditions (cf. Remark 2.5 ), but this is contained in

Lemma 2.9.

(ii) =⇒ (i). Let f ∈ Lp(0, 2π; X). By Lemma 2.9, the sequence { 1
1+ck

I}

is an Lp- multiplier. Hence, there exists g ∈ Lp(0, 2π; X) such that

(2.6) ĝ(k) =
1

1 + ck
f̂(k).

By uniqueness of Fourier coefficients, we obtain f(t) = g(t) +
∫ t
−∞ a(t −

s)g(s)ds.

Since g ∈ Lp(0, 2π;X) we use the hypothesis, to get a function v ∈

Lp(0, 2π; X) such that v̂(k) = (I − akA)−1ĝ(k) = bk(bkI −A)−1ĝ(k). Hence

akv̂(k) = (bkI −A)−1ĝ(k).

Because the sequence {akI}k∈Z is an Lp-multiplier by Lemma 2.9, we

conclude that there exists u ∈ Lp(0, 2π; X) such that

(2.7) û(k) = akv̂(k) = (bkI −A)−1ĝ(k).

In particular, u ∈ Ha,p
per.

Now, for all x ∈ D(A), the identity (bkI −A)−1Ax = bk(bkI −A)−1x− x

shows that (bkI−A)−1 is an L(X;D(A))- multiplier. Hence u ∈ Lp(0, 2π; D(A)).

Finally, we have bkû(k)−Aû(k) = bk(bkI −A)−1ĝ(k)−A(bkI −A)−1ĝ(k) =

ĝ(k) or ik
1+ã(ik) û(k)−Aû(k) = ĝ(k). Hence

ikû(k) = (1 + ã(ik))Aû(k) + (1 + ã(ik))ĝ(k) = Aû(k) + ã(ik)Aû(k) + f̂(k).

It follows from the uniqueness theorem of Fourier coefficients that (1.1) holds

for almost all t ∈ [0, 2π]. Since by Lemma 2.9, the sequence {(1+ck)I} is an

Lp-multiplier, there exists w ∈ Lp(0, 2π; X) such that ŵ(k) = (1+ck)v̂(k) =
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ikû(k). Hence by [3, Lemma 2.1], it follows that u(0) = u(2π). We have

proved that u is a strong Lp- solution of (1.1). It remains to show uniqueness.

Let u ∈ Ha,p
per ∩ Lp(0, 2π; D(A)) be such that

u′(t)−Au(t)−
∫ t

−∞
a(t− s)Au(s)ds = 0,

then û(k) ∈ D(A) and (ikI − (1 + ã(ik))A)û(k) = 0. Since ik
1+ã(ik) ∈ ρ(A)

this implies that û(k) = 0 for all k ∈ Z and thus u = 0.

(ii) ⇔ (iii) . Follows from Proposition 2.8 and the observation that {bk}

is 1-regular if and only if {ak} is 1-regular. In fact, we can write

k
(bk+1 − bk)

bk
= −k

(ak+1 − ak)
ak

· ak

ak+1

and note that |k(ak+1

ak
− 1)| ≤ M for some M > 0, implies ak+1

ak
→ 1 and

ak
ak+1

→ 1. Hence {k (bk+1−bk)
bk

} is bounded.

¤

Corollary 2.13. Let H be a Hilbert space and A : D(A) ⊂ H → H be

a closed linear operator. If the sequence {ck}k∈Z satisfies (H1) then, for

1 < p < ∞, the following assertions are equivalent:

(i) For every f ∈ Lp
per(R;H) there exists a unique strong Lp - solution of

(1.1).

(ii) {bk}k∈Z ⊂ ρ(A) and supk ||bk(bkI −A)−1|| < ∞.

Proof. This follows from Theorem 2.12, Proposition 2.8 and the fact that

in the context of Hilbert spaces, R-boundedness and boundedness are iden-

tical concepts. This in turn follows from Plancherel’s theorem and the fact



14 VALENTIN KEYANTUO AND CARLOS LIZAMA

that the Rademacher system {rj(t)} is an orthonormal family in L2(0, 1;C)

(see Clément-de Pagter-Sukochev-Witvliet [10]).

¤

The solution u(·) given by Theorem 2.12 actually satisfies the following

maximal regularity property. We will adopt the notation:

(2.8) a∗̇Au =
∫ ·

−∞
a(· − s)Au(s)ds.

Corollary 2.14. In the context of Theorem 2.12, if condition (ii) is valid we

have: u′, Au, a∗̇Au ∈ Lp(0, 2π; X). Moreover there exists a constant C > 0

independent of f ∈ Lp(0, 2π;X) such that

(2.9) ||u′||Lp(0,2π;X) + ||Au||Lp(0,2π;X) + ||a∗̇Au||Lp(0,2π;X) ≤ C||f ||Lp(0,2π;X)

Proof. The first statement follows from the proof of Theorem 2.12. We

verify this for Au: From (2.7) we have û(k) = (bkI −A)−1ĝ(k) hence

Aû(k) = bk(bkI −A)−1ĝ(k)− ĝ(k).

Since g ∈ Lp(0, 2π; X) and (I−akA)−1 = bk(bkI−A)−1 is an Lp-multiplier,

the claim follows. On the other hand,
∫ t
−∞ a(t−s)Au(s)ds = u′(t)−Au(t)−

f(t), which implies
∫ ·
−∞ a(· − s)Au(s)ds ∈ Lp(0, 2π; X). The second state-

ment is a consequence of the Closed Graph Theorem.

¤

Remark 2.15.

Fejer’s Theorem (see [3, Proposition 1.1] or [2, Theorem 4.2.19]) can be

used to construct the solution u(·) given by Theorem 2.12. More precisely,
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we have:

u(·) = lim
n→∞

1
n + 1

n∑

m=0

m∑

k=−m

ek ⊗R(bk, A)(1 + ã(ik))−1f̂(k)

with convergence in Lp(0, 2π; X).

Example 2.16.

(1) Suppose T > 0 is given and a(t) = χ[0,T ](t) where χ[0,T ] denotes the

characteristic function of [0, T ]. Then (1.1) takes the particularly simple

form:

u′(t) = Au(t) +
∫ T

0
Au(t− s)ds + f(t), 0 ≤ t ≤ 2π.

In this case, ã(λ) = 1−e−λT

λ , λ 6= 0. We set ã(0) = T . Therefore ck =

ã(ik) = 1−e−ikT

ik = 2
ke−ikT/2 sin kT

2 for k ∈ Z\{0}. Multiplier conditions

on (1 + ck), (1+ck
ik ) are readily verified. As for dk := 1

1+ck
, we have dk =

ik

1 + ik − e−ikT
which is bounded. Finally

dk+1 − dk =
ik(e−iT − 1)e−ikT + i(1− e−ikT )

(1 + i(k + 1)− e−i(k+1)T )(1 + ik − e−ikT )

=
ie−ikT (−1− k + eiT ) + i

(1 + i(k + 1)− e−i(k+1)T )(1 + ik − e−ikT )
,

so that k(dk+1 − dk) is bounded. Therefore, (H1) is satisfied.

(2) Let a(t) = be−ct, (c > 0). We will make the further assumption that

b + c 6= 0. Here we have ã(λ) = b
λ+c , Reλ > c, hence ck = b

ik+c , k ∈ Z.

Clearly {ck} is bounded and {kck} is bounded as well. It remains to

examine the multiplier conditions on 1
1+ck

. But 1 + ck = b+c+ik
c+ik implies

dk := 1
1+ck

= 1− b
b+c+ik which is bounded. The boundedness of k(dk+1−dk)

is easily verified, thus (H1) is also satisfied in this case. This example was
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considered by Da Prato and Lunardi [11] and is very important in the theory

of linear Volterra equations which treat practical applications. For this and

more examples, see J. Prüss [16, Chapter I, section 5, p.131].

3. Maximal regularity on Hölder and Besov spaces:

M-boundedness

In the paper [5], Arendt and Bu showed that the analogue of Marcinkiewicz’s

operator-valued Fourier multiplier theorem on Lp holds for the Besov space

Bs
p,q(T; X) if and only if 1 < p < ∞ and X is an UMD - space. Here, T

denotes the one dimensional torus R/Z which we often identify with [0, 2π].

Introducing stronger conditions these authors obtained a periodic (operator-

valued) Fourier multiplier theorem which is valid without restrictions on the

indices or the space. In this section, we use the results of [5] to character-

ize maximal regularity of equation (1.1). We briefly recall the definition

of periodic Besov spaces in the vector valued case introduced in [5]. For

the scalar case, see Triebel [17, Chapter 9]. An approach to periodic Besov

spaces based on semigroup theory and abstract interpolation is presented in

[7, Chapter 4].

Let S be the Schwartz space on R and let S ′ be the space of all tempered

distributions on R. Let Φ(R) be the set of all systems φ = {φj}j≥0 ⊂ S

satisfying

supp(φ0) ⊂ [−2, 2]

supp(φj) ⊂ [−2j+1,−2j−1] ∪ [2j−1, 2j+1], j ≥ 1
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∑

j≥0

φj(t) = 1, t ∈ R

and for α ∈ N ∪ {0}, there exists Cα > 0 such that

(3.1) sup
j≥0,x∈R

2αj ||φ(α)
j (x)|| ≤ Cα.

Let 1 ≤ p, q ≤ ∞, s ∈ R and φ = (φj)j≥0 ∈ Φ(R). The X - valued periodic

Besov spaces are defined by

Bs,φ
p,q = {f ∈ D′(T; X) : ||f ||

Bs,φ
p,q

= (
∑

j≥0

2sjq||
∑

k∈Z
ek ⊗φj(k)f̂(k)||qp)1/q < ∞}.

The space Bs,φ
p,q is independent of φ ∈ Φ(R) and the norms || · ||

Bs,φ
p,q

are

equivalent. We will simply denote || · ||
Bs,φ

p,q
by || · ||Bs

p,q
for some φ ∈ Φ(R).

See [5, section 1] for more details.

Definition 3.1. Let X and Y Banach spaces and let {Mk}k∈Z ⊂ L(X, Y ).

We will say that {Mk}k∈Z is an Bs
p,q-multiplier, if for each f ∈ Bs

p,q(T; X)

there exists u ∈ Bs
p,q(T; Y ) such that

û(k) = Mkf̂(k) for all k ∈ Z.

The following condition on sequences {Mk}k∈Z ⊂ L(X, Y ) was introduced

in [4] to study Fourier multipliers for Hölder continuous functions. It is also

used in the study of multipliers of Besov spaces of which the spaces Cα(T; X)

of X−valued Hölder continuous functions are a special instance.

Definition 3.2. We say that a sequence {Mk}k∈Z ⊂ L(X, Y ) is M - bounded

if

(3.2) sup
k∈Z

||Mk|| < ∞, sup
k∈Z

||k(Mk+1 −Mk)|| < ∞,
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(3.3) sup
k∈Z

||k2(Mk+1 − 2Mk + Mk−1)|| < ∞.

The following general multiplier theorem is due to Arendt-Bu [5, Theorem

3.5].

Theorem 3.3. Let X and Y Banach spaces and let {Mk}k∈Z ⊂ L(X,Y )

be a M - bounded sequence. Then for 1 ≤ p, q ≤ ∞, s ∈ R, {Mk}k∈Z is a

Bs
p,q-multiplier.

We are now in a position to prove the following proposition which is the

analogue of Proposition 2.8.

Proposition 3.4. Let A be a closed linear operator defined on the Banach

space X. Let {bk}k∈Z ∈ C\{0} be a 2-regular sequence such that {bk =

1
ak
}k∈Z ⊂ ρ(A). Let Mk = (I − akA)−1. Then the following assertions are

equivalent

(i) {(I − akA)−1}k∈Z is a Bs
p,q-multiplier, 1 ≤ p ≤ ∞, s ∈ R,

(ii) {(I − akA)−1}k∈Z is bounded.

Proof. (i) ⇒ (ii). It follows from the Closed Graph Theorem that there

exists C > 0 such that for f ∈ Bs
p,q(T; X), we have

||
∑

k∈Z
ek ⊗Mkf̂(k)||Bs

p,q
≤ C||f ||Bs

p,q
.

Let x ∈ X and define f(t) = en ⊗ x for n ∈ Z fixed. Then the above

inequality implies ||en||Bs
p,q
||Mnx|| = ||enMnx|| ≤ C||en||Bs

p,q
||x||. Hence

||Mn|| ≤ C.

(ii) ⇒ (i). From the proof of Proposition 2.8 we have the identity

k(Mk+1 −Mk) =
k(ak+1 − ak)

ak
(I − ak+1A)−1[(I − akA)−1 − I].
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Observe that {ak} is 1-regular if and only if { 1
ak
} is 1-regular. Hence, bound-

edness of {Mk} together with 1-regularity of {bk} , imply that

sup
k
||k(Mk+1 −Mk)|| < ∞.

In order to verify the second condition, we observe that for λ, µ, γ ∈ ρ(A)

we have the identity

λR(λ,A) − 2µR(µ, A) + γR(γ, A)

= µR(µ,A)[
(µ− λ)

µ

(γ − λ)
λ

]λR(λ,A)[γR(γ, A)− I]

− µR(µ,A)
(λ− 2µ + γ)

µ
[γR(γ, A)− I].

where R(λ,A) = (λ−A)−1 denotes the resolvent operator. Note that Mk =

bkR(bk, A). Substituting λ = bk−1, µ = bk, γ = bk+1, we obtain

k2(Mk−1 − 2Mk + Mk+1)

= Mk[
k(bk − bk−1)

bk−1

k(bk+1 − bk−1)
bk

]Mk−1[Mk+1 − I]

− Mk
k2(bk−1 − 2bk + bk+1)

bk
[Mk+1 − I].

Since {bk} is 1-regular, we get that αk := k(bk−bk−1)
bk−1

and βk := k(bk+1−bk−1)
bk

are bounded. In fact, let mk := k(bk+1−bk)
bk

, then we have

αk = mk−1 +
(bk − bk−1)

bk−1

and

βk = mk + mk−1
bk−1

bk
.

It follows from |k( bk+1

bk
− 1)| ≤ C for some C > 0 that | bk+1

bk
− 1| ≤ C

|k| and

thus bk+1

bk
→ 1, proving the claim.
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On the other hand, by 2-regularity, k2(bk−1−2bk+bk+1)
bk

is bounded. Hence

sup
k
||k2(Mk−1 − 2Mk + Mk+1)|| < ∞,

and the result follows from Theorem 3.3.

¤

Definition 3.5. Let 1 ≤ p, q ≤ ∞ and s > 0. A function u ∈ Bs+1
p,q (T; X)

is called a strong Bs
p,q - solution of (1.1) if u(t) ∈ D(A) and (1.1) holds for

a.e. t ∈ [0, 2π]

Remark 3.6.

By [5, Theorem 1.3] if u is a strong Bs
p,q - solution of (1.1), then u is

differentiable a.e. and u′ ∈ Bs
p,q(T;X).

We recall from Section 2 the notation

ck = ã(ik);

bk =
1
ak

=
ik

1 + ã(ik)
for all k ∈ Z\{0}; b0 = 0.

We recall also that (a∗̇u)(t) =
∫ t

−∞
a(t− s)u(s)ds.

We introduce the following condition

(H2) {kck} and {k2(ck+1 − 2ck + ck+1)} are bounded sequences.

Remark 3.7.

(1) The case a(t) = χ[0,T ](t) already considered above (Example 2.16)

in which ã(λ) =
1− e−λT

λ
, ã(0) = T, does not in general satisfy condition
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(H2). However, if T = 2π, we have ã(ik) = 0, k ∈ Z\{0} so that (H2) is

trivially satisfied. Note that in this case, ã(λ) does not satisfy the conditions

of the Analytic Representation Theorem ([2, Theorem 2.6.1]). It does not

satisfy the condition imposed by Da Prato-Lunardi ([12, Condition(5.2),

p.104]) either.

(2) One verifies that for a(t) = be−ct, (c > 0), (H2) is satisfied. More

generally, if n ∈ N and a(t) =
tn

(n− 1)!
e−ct ( where c > 0 ) then ã(λ) =

1
(λ + c)n

and for n ≥ 2, (H2) is trivially satisfied since k2ck =
k2

(c + ik)n
is

bounded.

In the following lemma we show, in particular, that condition (H2) implies

condition (H1).

Lemma 3.8. Let X be a Banach space. We have

(i) If {kck} is bounded, then condition (H1) holds. Moreover,

(ii) under condition (H2), the sequences {(1+ck)I}k∈Z , { (1+ck)
ik I}k∈Z\{0}

and {( 1
1+ck

)I}k∈Z are Bs
p,q(0, 2π;X)-multipliers.

Proof. (i) Clearly, condition (H2) implies that {ck} is bounded. Hence

k(ck+1− ck) = (k+1)ck+1− ck+1−kck is bounded and limk→∞ ck = 0. This

proves that 1
1+ck

is also bounded and (H1) is satisfied.

(ii) By (i), and hence (H1), the sequence {mk := (1+ck)I}k∈Z is bounded

and satisfies

(3.4) k(mk+1 −mk) = k
(ck − ck+1)

(1 + ck+1)(1 + ck)

By (H2), we obtain directly that {k2(mk+1−2mk +mk−1)} is also bounded

and hence {mk} is a Bs
p,q-multiplier.
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For ak =
1 + ck

ik
we obtain the identity

k2(ak+1 − 2ak + ak−1) =
k2

i(k + 1)k(k − 1)
[k2(ck+1 − 2ck + ck−1)

− k(ck+1 − ck−1) + 2(1 + ck)],

and therefore k2(ak+1 − 2ak + ak−1) is bounded, which proves that {ak} is

a Bs
p,q-multiplier. Finally, if nk := 1

1+ck
then

k2(nk+1 − 2nk + nk−1) =
−k2(ck−1 − 2ck + ck+1)

(1 + ck)(1 + ck+1)(1 + ck−1)

− kck−1k(ck+1 − ck)
(1 + ck)(1 + ck+1)(1 + ck−1)

+
kck+1k(ck − ck−1)

(1 + ck)(1 + ck+1)(1 + ck−1)

and hence k2(nk+1 − 2nk + nk−1) is bounded, showing that {nk} is also a

Bs
p,q-multiplier.

¤

Theorem 3.9. Let 1 ≤ p, q ≤ ∞ and s > 0. Let A be a closed linear

operator defined on a Banach space X and assume that condition (H2) is

satisfied and {bk} is 2-regular. The following assertions are equivalent:

(i) {bk}k∈Z ⊂ ρ(A) and supk ||bk(bkI −A)−1|| < ∞.

(ii) For every f ∈ Bs
p,q(T;X) there exists a unique strong Bs

p,q - solution

of (1.1) such that u′, Au and a∗̇Au ∈ Bs
p,q(T;X).

Proof. (ii) ⇒ (i). Let x ∈ X be fixed. Let k ∈ Z and let f(t) = ek ⊗ x.

Note that f ∈ Bs
p,q(T; X). Hence there exists u ∈ Bs+1

p,q (T;X) such that

u(t) ∈ D(A) and (1.1)holds for a.e. t ∈ [0, 2π]. Following the same reasoning

as in the proof of Theorem 2.12 we obtain that {bk}k∈Z ⊂ ρ(A).
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By hypothesis, and using the Closed Graph Theorem, we obtain that

there exists C > 0 independent of f and u such that

||u||Bs+1
p,q

+ ||Au||Bs
p,q

+ ||a∗̇Au||Bs
p,q
≤ C||f ||Bs

p,q
.

We consider f(t) = ek⊗x for some k ∈ Z and x ∈ X. The solution u satisfies

u′(t) = bk(bkI −A)−1ek ⊗x (see equation (2.5)).The above estimate implies

that

||bk(bkI −A)−1x|| ≤ C||x|| for all k ∈ Z.

This proves the implication.

(i) ⇒ (ii). Because of Lemma 3.8, the proof follows the same lines as the

proof of Theorem 2.12 in section 2. We omit the details.

¤

In case p = q = ∞ and 0 < s < 1 we have Bs∞,∞(T; X) corresponds to

the space Cs(T; X) of Hölder continuous functions (see e.g. [4]). We state

the corresponding result separately:

Theorem 3.10. Let A be a closed linear operator defined on a Banach space

X and let 0 < α < 1. Assume that condition (H2) is satisfied and {bk} is

2-regular. The following assertions are equivalent:

(i) {bk}k∈Z ⊂ ρ(A) and supk ||bk(bkI −A)−1|| < ∞.

(ii) For every f ∈ Cα(0, 2π; X) there exists a unique strong Cα - solution

of (1.1) such that u′, Au and a∗̇Au ∈ Cα(0, 2π;X).

We remark that if X is UMD space then condition (H1) is enough for

the validity of Theorem 3.9 and Theorem 3.10. Moreover we do not need to
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assume that the sequence (bk) is 2-regular. This follows from [5, Theorem

3.2].

Theorem 3.9 and Theorem 3.10 apply in particular when A generates a

bounded holomorphic semigroup on X. This case is studied in Da Prato-

Lunardi [11, 12] where the semigroup is used for a direct construction of the

solution of the equation.

Acknowledgements: The authors wish to thank the referee for useful sugges-

tions and for pointing out to them the reference [14].

References

[1] H. Amann. Linear and Quasilinear Parabolic Problems. Monographs in Mathematics.
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