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Abstract. We use operator-valued Fourier multiplier theorems to study second
order differential equations in Banach spaces. We establish maximal regularity
results in Lp and Cs for strong solutions of a complete second order equation.

In the second part, we study mild solutions for the second order problem. Two
types of mild solutions are considered. When the operator A involved is the
generator of a strongly continuous cosine function, we give characterizations in
terms of Fourier multipliers and spectral properties of the cosine function. The
results obtained are applied to elliptic partial differential operators.

1. Introduction

The main purpose of this paper is to prove existence and uniqueness of the periodic
second order Cauchy problem

(1.1)





u′′(t)− aAu(t)− αAu′(t) = f(t), 0 ≤ t ≤ 2π

u(0) = u(2π),

u′(0) = u′(2π),

on a Banach space X. Here, A is a closed linear operator on X, a, α ∈ R, and f ∈
Lp

2π(R; X) or f ∈ Cs
2π(R; X)(0 < s < 1). Throughout, Lp

2π(R; X) (resp. Cs
2π(R; X))

stands for the space of 2π−periodic functions that are p−summable (resp. Hölder
continuous of exponent s) on [0, 2π]. Special attention is paid to the case α = 0. In
this case we study mild solutions as well.

Problem (1.1) corresponds to a special case of the inhomogeneous complete second
order Cauchy problem

(1.2) u′′(t)− Au(t)−Bu′(t) = f(t),

which has been extensively studied by semigroup methods since the pioneering paper
of J.-L. Lions [26]. Other early contributions are due to Sobolevskii [34] where A
and B can in fact depend on t, and Fattorini [22, Chapter VIII]. In these works, the
emphasis is placed on reducing (1.2) to a first order system in a product space and
then using semigroup theory. The theory of (1.2) is considerably more complicated
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than of its incomplete counterpart (i.e. with B = 0). Recently, Xiao and Liang [40]
presented a unified treatment of the complete second order Cauchy problem with
differential operators as coefficient operators in Lp(RN), (1 ≤ p ≤ ∞) and other
function spaces. Still another approach to problem (1.2) can be found in the paper
[10] by Chill and Srivastava.

Motivation of our work relies in the application of maximal regularity results to
the study of nonlinear problems. Semilinear problems of the form (1.1) with periodic
conditions appears for example [1, Theorem 4.1], whereas a related quasilinear prob-
lem was treated by Nakao and Okochi [28, Section 5 ]. On the other hand, when A =
B = ∆ is the n-dimensional Laplacian and f depends on u, uxi

, uxixj
, ut, u

′
xi

, u′xixj

Ebihara [19] (see also [20])proved for equation (1.1) uniqueness of solutions in a
certain class of functions and the global existence of a (classical) solution.

In this work, we are able to give necessary and sufficient conditions in order
to obtain existence and uniqueness of periodic solutions for (1.1) in the spaces
Lp

2π(R; X), 1 < p < ∞ and Cs
2π(R; X), 0 < s < 1 (solutions in the Besov spaces

Bs
p,q(0, 2π; X) are also considered). Namely, we obtain that when X has the UMD

property, then for every f ∈ Lp
2π(R; X) there exists a unique strong Lp-solution of

(1.1) if and only if { −k2

a+iαk
}k∈Z ⊆ ρ(A) and { −k2

a+iαk
( −k2

a+iαk
I − A)−1}k∈Z is R-bounded.

The concept of R-boundedness was introduced by Bourgain [8]. Since large classes
of classical operators are R-bounded (cf. Girardi-Weis [24] and the recent memoir
of Denk, Hieber and Prüss [16]), the assumptions in this approach are not too
restrictive for applications.

In contrast to the above result, we show that additional restrictions on X or even
R-boundedness are not needed in case of periodic Hölder spaces, namely; for every
f ∈ Cs

2π(R; X), s ∈ (0, 1) there exists a unique strong Cs
2π-solution of (1.1) such that

u′ ∈ Cs
2π(R; D(A)) and u′′, Au, Au′ ∈ Cs

2π(R; X) if and only if { −k2

a+iαk
}k∈Z ⊆ ρ(A)

and supk || −k2

a+iαk
( −k2

a+iαk
I − A)−1|| < ∞. The situation is similar for Besov spaces.

In the case of mild solutions, we consider two notions of such solutions when the
operator A is densely defined. We define and characterize, mild (resp. mild of class
C1 ) periodic solutions. Moreover, if A generates a cosine function C(t) with S(t)
the associated sine family, then we are able to obtain the following characterization:
for every f ∈ Lp

2π(R; X) there exists a unique (x, y) ∈ X×X (resp. (x, y) ∈ E×X)

such that u given by u(t) = C(t)x + S(t)y +

∫ t

0

S(t − s)f(s)ds is 2π-periodic,

i.e. u(0) = u(2π) and u′(0) = u(2π) if and only if {−k2 : k ∈ Z} ⊆ ρ(A) and
(R(−k2, A))k∈Z ( resp. (kR(−k2, A))k∈Z) is an (Lp, Lp)-multiplier. Equivalently, if
and only if S(2π) ∈ B(X,E) is invertible (resp. 1 ∈ ρ(C(2π))). Here, E is the space
of vectors x ∈ X for which C(t)x is continuously differentiable. These results are
new and complete those of [11] and [32].
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To achieve our goals, we make extensive use of recent results from the papers
Arendt-Bu [6], [5] and Keyantuo-Lizama [25], and the methods are based on operator-
valued Fourier multipliers theorems. In the non-periodic case, operator-valued
Fourier multiplier theorems have been established by Amann [3], Weis [38], [39],
Girardi-Weis [23], and Arendt-Batty-Bu [5].

The paper is organized as follows: In Section 2, strong Lp solutions of (1.1) are
studied. Section 3 deals with Hölder continuous periodic solutions. When α = 0
and a = 1 we study mild solutions and mild solutions of class C1 respectively in
Section 4 and Section 5. Particular attention is paid to the situation where A is
the infinitesimal generator a strongly continuous cosine function. Throughout, we
discuss examples involving the Laplace operator (as well as more general elliptic
operators) with Dirichlet boundary conditions on an open subset Ω of RN .

2. Periodic solutions on Lp(0, 2π; X)

For a function f ∈ L1(0, 2π; X), we denote by f̂(k), k ∈ Z the k-th Fourier
coefficient of f :

f̂(k) =
1

2π

∫ 2π

0

e−k(t)f(t)dt,

where for k ∈ Z, ek(t) = eikt, t ∈ R.
Let X, Y be Banach spaces. We denote by B(X, Y ) be the space of all bounded

linear operators from X to Y . When X = Y , we write simply B(X). For a linear
operator A on X, we denote domain by D(A) and its resolvent set by ρ(A), and for
λ ∈ ρ(A), we write R(λ,A) = (λI − A)−1.

We shall frequently identify the spaces of (vector or operator-valued) functions
defined on [0, 2π] to their periodic extensions to R. Thus, throughout, we consider
the space Lp

2π(R; X) (which is also denoted by Lp(0, 2π; X), 1 ≤ p ≤ ∞) of all
2π-periodic Bochner measurable X-valued functions f such that the restriction of f
to [0, 2π] is p-integrable (essentially bounded if p = ∞).

We begin with some preliminaries about operator-valued Fourier multipliers. More
information may be found in Arendt-Bu [6] for the periodic case and Amann [2],
Weis [38] for the non-periodic case.

Definition 2.1. For 1 ≤ p ≤ ∞, we say that a sequence {Mk}k∈Z ⊂ B(X, Y ) is an
(Lp, Lp)-multiplier, if for each f ∈ Lp

2π(R; X) there exists u ∈ Lp
2π(R; Y ) such that

û(k) = Mkf̂(k) for all k ∈ Z.

It follows from the uniqueness theorem of Fourier series that u is uniquely de-
termined by f . Moreover, if (Mk) ⊂ B(X, Y ) is an (Lp(X), Lp(Y ))−multiplier and
(Nk) ⊂ B(Y, Z) an (Lp(Y ), Lp(Z))−multiplier, then it follows from the definition
that (NkMk) is an (Lp(X), Lp(Z))−multiplier.
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For j ∈ N, denote by rj the j-th Rademacher function on [0, 1], i.e. rj(t) =
sgn(sin(2jπt)). For x ∈ X we denote by rj⊗x the vector valued function t → rj(t)x.

Definition 2.2. A family T ⊂ B(X, Y ) is called R-bounded if there is a constant
C ≥ 0 such that

(2.1) ||
n∑

j=1

rj ⊗ Tjxj||Lp(0,1;Y ) ≤ Cp||
n∑

j=1

rj ⊗ xj||Lp(0,1;X)

for all T1, ..., Tn ∈ T, x1, ..., xn ∈ X and n ∈ N, for some p ∈ [1, ∞).

If (2.1) holds for some p ∈ [1, ∞), then it holds for all p ∈ [1, ∞). The best
constant C in (2.1) is denoted by Rp(T ).

It follows readily from the definition that any R-bounded family is bounded. The
converse of this assertion holds only in spaces which are isomorphic to Hilbert spaces
(see [6], Proposition 1.13 and the comments preceding it).

Remark 2.3.

a) Let S,T ⊂ B(X) be R-bounded sets, then S · T := {S · T : S ∈ S, T ∈ T} is
R- bounded and

Rp(S ·T) ≤ Rp(S) ·Rp(T).

b) Also, each subset M ⊂ B(X) of the form M = {λI : λ ∈ Ω} is R- bounded
whenever Ω ⊂ C is bounded (I denotes the identity operator on X). This follows
from Kahane’s inequality (see [6, Lemma 1.7]). We shall use this remark frequently.

The following theorem, due to Arendt-Bu [6, Theorem 1.3], is the discrete ana-
logue of the operator-valued version of Mikhlin’s theorem. It is concerned with
UMD spaces.

We recall that those Banach spaces X for which the Hilbert transform defined by

(Hf)(t) = lim
ε→0

R→∞

1

π

∫

ε≤|s|≤R

f(t− s)

s
ds

is bounded on Lp(R, X) for some (and hence all) p ∈ (1,∞) are called UMD-
spaces. The limit in the above formula is to be understood in the Lp sense. An
alternative definition using Fourier series may be found in [9]. This paper contains
other characterizations of the UMD property, notably the one involving martingale
differences in Banach spaces.

Examples of UMD spaces include Hilbert spaces, Lebesgue spaces, as well as
vector valued Lebesgue spaces Lp(Ω, µ), 1 < p < ∞, Lp(Ω, µ; X), 1 < p < ∞ when
X is a UMD space and the Schatten-von Neumann classes Cp(H), 1 < p < ∞,
of operators on a Hilbert space. Every UMD space is superreflexive, i.e. has an
equivalent norm under which it is uniformly convex. The spaces L1(Ω, µ), L∞(Ω, µ)
(if infinite dimensional) and Cs([0, 2π]; X) are not reflexive and therefore are not
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UMD. More information on UMD spaces can be found in Amman [2], Bourgain
[8], De Pagter-Witvliet [17] and Denk, Hieber and Prüss [16].

Theorem 2.4. (Operator-valued Marcinkiewicz multiplier theorem)
Let X,Y be UMD-spaces and {Mk}k∈Z ⊂ B(X,Y ). If the sets {Mk}k∈Z and

{k(Mk+1 −Mk)}k∈Z are R-bounded, then {Mk}k∈Z is an (Lp, Lp)-multiplier for 1 <
p < ∞.

Remark 2.5.

(1) If X = Y is a UMD space and Mk = mkI with mk ∈ C, then the condition

sup
k
|mk|+ sup

k
|k(mk+1 −mk)| < ∞

implies that the set {Mk}k∈Z is an (Lp, Lp)-multiplier. (see [6] or [2, The-
orem 4.4.3]). This is the vector-valued extension of the original theorem of
Marcinkiewicz. The result does not hold in general if the UMD condition is
dropped.

(2) We note that in the case where X = Y = Lp(0, 1), 1 < p < ∞, which is a
typical example of a UMD space, another sufficient condition for a sequence
{Mk}k∈Z ⊂ B(X) to be a Fourier multiplier may be found in [18].

The following concept of k-regularity (k = 1, 2) introduced in [25] is the discrete
analog for the notion of k-regularity related to Volterra integral equations, see [30,
Chapter I, Section 3.2].

Definition 2.6. A sequence {ak}k∈Z ⊂ C\{0} is called

a) 1-regular if the sequence {k(ak+1 − ak)

ak

}k∈Z is bounded.

b) 2-regular if it is 1-regular and the sequence

{k2(ak+1 − 2ak + ak−1)

ak

}k∈Z

is bounded.

The following result on Fourier multipliers and resolvent operators is proved in
[25, Proposition 2.8].

Proposition 2.7. Let A be a closed linear operator defined on a UMD space X.
Let {bk}k∈Z ∈ C\{0} be a 1-regular sequence such that {bk}k∈Z ⊂ ρ(A). Then the
following assertions are equivalent

(i) {bk(bkI − A)−1}k∈Z is an (Lp, Lp)-multiplier, 1 < p < ∞.

(ii) {bk(bkI − A)−1}k∈Z is R-bounded.

In what follows, and for n ∈ N, we denote by Hn,p(0, 2π; X) the space of all
u ∈ Lp(0, 2π; X) for which there exists v ∈ Lp(0, 2π; X) such that v̂(k) = (ik)nû(k)
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for all k ∈ Z (cf. [6, Section 2]). Note that for u ∈ H2,p(0, 2π; X), it follows that
u(0) = u(2π), u′(0) = u′(2π).

Remark 2.8.

We recall from [6, Lemma 2.2] that for 1 ≤ p < ∞ and (Mk)k∈Z ⊂ B(X), we
have that (kMk)k∈Z is an (Lp, Lp)- multiplier if and only if (Mk)k∈Zis an (Lp, H1,p)-
multiplier. Hence, inductively, we get that, for all n ∈ N, (knMk)k∈Z is an (Lp, Lp)-
multiplier if and only if (Mk)k∈Z is an (Lp, Hn,p)-multiplier.
A similar remark holds for the Hölder spaces Cs (upon inspection of the proof of [6,
Lemma 2.2]) and will be used in the next section.

We always assume that a 6= 0 but otherwise, do not put any condition on its sign.

Definition 2.9. Let 1 < p < ∞. A function u is called a strong Lp-solution of
(1.1) if u ∈ H2,p(0, 2π; X) ∩ H1,p(0, 2π; D(A)) and equation (1.1) holds for almost
all t ∈ [0, 2π].

We have the following auxiliary result.

Lemma 2.10. Consider the sequence bk = −k2

a+iαk
, k ∈ Z. Then (bk)k 6=0 is 2-regular.

The proof follows by direct computation and we omit it.

The following is the main result of this section.

Theorem 2.11. Let X be a UMD space and A : D(A) ⊂ X → X be a closed linear
operator. The following assertions are equivalent for 1 < p < ∞ :

(i) For every f ∈ Lp
2π(R; X) there exists a unique strong Lp-solution of (1.1).

(ii) { −k2

a+iαk
}k∈Z ⊆ ρ(A) and { −k2

a+iαk
( −k2

a+iαk
I − A)−1)}k∈Z is an (Lp, Lp)-multiplier.

(iii) { −k2

a+iαk
}k∈Z ⊆ ρ(A) and { −k2

a+iαk
( −k2

a+iαk
I − A)−1}k∈Z is R-bounded.

Proof. (i) =⇒ (ii). We shall follow the same lines as the proof of [6, Theorem
2.3]. Let k ∈ Z and y ∈ X. Define f = ek ⊗ y. There exists u ∈ H2,p(0, 2π; X)
such that u′′(t) − aAu(t) − αAu′(t) = f(t). Taking Fourier series on both sides we

obtain that û(k) ∈ D(A) and −k2û(k) − aAû(k) − αikAû(k) = f̂(k) = y. Thus,
(−k2I − (a+ iαk)A) is surjective. Let x ∈ D(A). If (−k2I − (a+ iαk)A)x = 0, that

is Ax =
−k2

a + iαk
x then u(t) = eiktx defines a periodic solution of u′′(t) − aAu(t) −

αAu′(t) = 0. Hence u = 0 by the assumption of uniqueness and thus x = 0. Since

A is closed, we conclude that {bk := −k2

a+iαk
}k∈Z ⊂ ρ(A).
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Next we show that {bk(bkI−A)−1}k∈Z is an (Lp, Lp)-multiplier. Let f ∈ Lp(0, 2π; X).
By hypothesis, there exists a unique u ∈ H2,p(0, 2π; X) such that u′′(t)− aAu(t)−
αAu′(t) = f(t). Taking Fourier series, we deduce that û(k) ∈ D(A) and (−k2I −
(a + iαk)A)û(k) = f̂(k) or (a + iαk)(bkI − A)û(k) = f̂(k) for all k ∈ Z. Hence,

(2.2) − k2û(k) = bk(bkI − A)−1f̂(k) for all k ∈ Z.

Note that by definition of H2,p(0, 2π; X), there exists v ∈ Lp(0, 2π; X) such that
v̂(k) = −k2û(k) for all k ∈ Z. Hence, {bk(bkI − A)−1}k∈Z is an (Lp, Lp)-multiplier.

(ii) =⇒ (i). Let f ∈ Lp(0, 2π; X). By hypothesis there exists v ∈ Lp(0, 2π; X)
such that

(2.3) v̂(k) = bk(bkI − A)−1f̂(k) = −k2Mkf̂(k),

where Mk =
1

a + iαk
(
−k2

a + iαk
− A)−1.

By Remark 2.8 , we obtain from (2.3) that (Mk)k∈Z is an (Lp, H2,p)-multiplier and
hence we conclude that there exists u ∈ H2,p(0, 2π; X) such that

(2.4) û(k) =
1

a + iαk
(bkI − A)−1f̂(k).

In particular, û(k) ∈ D(A) for all k ∈ Z.
Again by Remark 2.8, (kMk)k∈Z is an (Lp, H1,p)-multiplier and hence there exists

w ∈ H1,p(0, 2π; X) such that ŵ(k) = ikû(k) =: û′(k).
Now, the identity A(bk − A)−1 = bk(bk − A)−1 − I shows that

Aû(k) =
1

a + iαk
A(bkI − A)−1f̂(k)

=
1

a + iαk
bk(bkI − A)−1f̂(k)− 1

a + iαk
f̂(k)

=
1

a + iαk
v̂(k)− 1

a + iαk
f̂(k),

Since by Remark 2.5 1
a+iαk

I is a Fourier multiplier, by Lemma 3.1 in [AB] we con-
clude that u(t) ∈ D(A). Also we see that Au ∈ Lp(0, 2π, X). Similarly, for k ∈ Z,
we have

Akû(k) =
k

a + iαk
bk(bk − A)−1f̂(k)− k

a + iαk
f̂(k)

=
k

a + iαk
v̂(k)− k

a + iαk
f̂(k)

and arguing as above, we obtain u′(t) ∈ D(A) and Au′ ∈ Lp
2π(R; X).Also we note

from (2.3) and (2.4) that u′′ := v ∈ Lp(0, 2π, X).

Finally, from (2.4) we have (−k2I − (a + iαk)A)û(k) = f̂(k). It follows from the
uniqueness theorem of Fourier coefficients that (1.1) holds for almost all t ∈ [0, 2π].
We have proved that u is a strong Lp-solution of (1.1). It remains to show uniqueness.
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Let u be such that

u′′(t)− aAu(t)− Au′(t) = 0,

then û(k) ∈ D(A) and (−k2I− (a+ iαk)A)û(k) = 0. Since −k2

a+iαk
∈ ρ(A) this implies

that û(k) = 0 for all k ∈ Z and thus u = 0.

(ii) ⇔ (iii) . Follows from Proposition 2.7 and the observation that { −k2

a+iαk
} is

1-regular, according Definition 2.6 and Lemma 2.10.
¤

Corollary 2.12. Let H be a Hilbert space and A : D(A) ⊂ H → H be a closed
linear operator. Then, for 1 < p < ∞, the following assertions are equivalent:

(i) For every f ∈ Lp
2π(R; H) there exists a unique strong Lp-solution of (1.1).

(ii) { −k2

a+iαk
}k∈Z ⊂ ρ(A) and supk || −k2

a+iαk
( −k2

a+iαk
I − A)−1|| < ∞.

Proof. This follows from Theorem 2.11, Proposition 2.7 and the fact that in the
context of Hilbert spaces, R-boundedness and boundedness are identical concepts.
This in turn follows from Plancherel’s theorem and the fact that the Rademacher sys-
tem {rj(t)} is an orthonormal family in L2(0, 1;C) (see Clément-de Pagter-Sukochev-
Witvliet [13]).

¤

The solution u(·) given by Theorem 2.11 actually satisfies the following maximal
regularity property.

Corollary 2.13. In the context of Theorem 2.11, if condition (ii) is satisfied we
have: u′′, Au, Au′ ∈ Lp

2π(R; X), u′ ∈ Lp
2π(R; D(A)). Moreover, there exists a con-

stant C > 0 independent of f ∈ Lp
2π(R; X) such that the following inequality holds:

(2.5) ||u′′||Lp
2π(R;X) + ||u′||Lp

2π(R;D(A)) + ||Au||Lp
2π(R;X) + ||Au′||Lp

2π(R;X) ≤ C||f ||Lp
2π(R;X)

Proof.
The first assertion follows from the proof of Theorem 2.11. The estimate (2.5) is

a consequence of the Closed Graph Theorem.
¤

Remark 2.14.

Fejer’s Theorem (see [6, Proposition 1.1] or [4, Theorem 4.2.19]) can be used
to construct the solution u(·) given by Theorem 2.11. More precisely, for bk :=
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−k2

a+iαk
, k ∈ Z we have:

u(·) = lim
n→∞

1

n + 1

n∑
m=0

m∑

k=−m

ek ⊗ bkR(bk, A)f̂(k)

with convergence in Lp(0, 2π; X). This remark will be used in Section 4 and Section
5 in the construction of mild solutions.

Example 2.15.

Let A = d2/dx2 defined in L2(0, π) with D(A) = {v ∈ H2,2(0, π) : v(0) = v(π) =
0}. This is the Laplacian on the interval with Dirichlet boundary conditions. Then
A is self-adjoint. This is a linearized version of the case considered by Nakao and
Okochi [28]. As we will see below, the condition a > 0 used by these authors is not
necessary when we treat with the linear case.

More generally, Let A be the Laplace operator given by Au =
N∑

i=1

∂2u

∂x2
i

on L2(Ω)

where Ω is a bounded open subset of RN . The precise definition of the operator A
we have in mind is the following.

We define a form a(., .) with domain D(a) = H1
0 (Ω) on L2(Ω) by:

a(u, v) = −
N∑

i,j=1

∫

Ω

Diu(x)(Djv)(x) dx.

Let A be the closed operator on L2(Ω) associated with the quadratic form a(., .).
Then A is a realization of A with Dirichlet boundary conditions; i.e. u = 0 on the
boundary ∂Ω of Ω in an appropriate sense. If Ω is smooth, e.g. ∂Ω is of class C1

then u = 0 almost everywhere (for the surface measure) on ∂Ω.
The above results apply to the operator A so defined.
The following corollary shows that the operator A considered here need not be a

semigroup generator, much less a cosine function generator.

Corollary 2.16. Let H be a Hilbert space and A : D(A) ⊂ H → H be a self-adjoint
operator such that 0 ∈ ρ(A). Assume that α 6= 0. Then, for 1 < p < ∞, we have:

For every f ∈ Lp
2π(R; H) there exists a unique strong Lp-solution of (1.1).

Proof. Since bk = −k2

a+iαk
, k ∈ Z, we have <(bk) = −k2a

a2+α2k2 and =(bk) = k3α
a2+α2k2 .

For a self-adjoint operator A it is well known that for z ∈ C \ R, z ∈ ρ(A) and
‖(z − A)−1‖ ≤ 1

|=(z)| . It follows that for k 6= 0,
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‖bk(bk − A)−1‖2 ≤ |bk|2
|=(bk)|2 ≤ 1 +

(<(bk)

=(bk)

)2

≤ 1 +

(
k2a

k3α

)2

≤ 1 +
a2

α2
.

Therefore sup{‖bk(bk − A)−1‖, k ∈ Z} ≤ ‖A−1‖ +
√

1 + a2

α2 and Corollary 2.12

applies.
¤

3. Periodic solutions on Hölder spaces

In the present section, we deal with with periodic solutions in Hölder and Besov
spaces. The results apply to a large class of elliptic operators.

Let X be a Banach space. For 0 < s < 1 we denote by Cs(R; X) the space of all
continuous functions f : R→ X such that

||f(t)− f(t′)|| ≤ c|t− t′|s (t, t′ ∈ R)

for some c ≥ 0.
By C2π(R; X) we denote the space of all 2π-periodic continuous functions f : R→

X. We let Cs
2π(R; X) = Cs(R; X) ∩ C2π(R; X).

In the paper [5], Arendt and Bu showed that the analogue of Marcinkiewicz’s
operator-valued Fourier multiplier theorem on Lp holds for the Hölder space Cs

2π(R; X)
without restrictions on the space X. Moreover, the concept of R−boundedness is
not used. In this section, we use the results of [5] to characterize maximal regularity
of equation (1.1).

Definition 3.1. Let X and Y be Banach spaces and let {Mk}k∈Z ⊂ B(X,Y ). We
will say that {Mk}k∈Z is a Cs

2π-multiplier, if for each f ∈ Cs
2π(R; X) there exists

u ∈ Cs
2π(R; Y ) such that

û(k) = Mkf̂(k) for all k ∈ Z.

The following condition on sequences {Mk}k∈Z ⊂ B(X,Y ) was introduced in [5]
to study Fourier multipliers for Hölder continuous functions. It is also used in the
study of multipliers of Besov spaces of which the spaces Cs(R; X) of X−valued
Hölder continuous functions of exponent s are a special instance.

Definition 3.2. We say that a sequence {Mk}k∈Z ⊂ B(X,Y ) is M- bounded if

(3.1) sup
k∈Z

||Mk|| < ∞, sup
k∈Z

||k(Mk+1 −Mk)|| < ∞,

(3.2) sup
k∈Z

||k2(Mk+1 − 2Mk + Mk−1)|| < ∞.
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The following general multiplier theorem is due to Arendt-Bu [5, Theorem 3.4].

Theorem 3.3. Let X and Y be Banach spaces and let {Mk}k∈Z ⊂ B(X, Y ) be an
M-bounded sequence. Then {Mk}k∈Z is a Cs

2π-multiplier.

The following proposition is the analogue of Proposition 2.7 and corresponds to
a particular case of [25, Proposition 3.4].

Proposition 3.4. Let A be a closed linear operator defined on the Banach space X.
Let {bk}k∈Z ∈ C\{0} be a 2-regular sequence such that {bk}k∈Z ⊂ ρ(A). Then the
following assertions are equivalent

(i) {bk(bkI − A)−1}k∈Z is a Cs
2π-multiplier.

(ii) {bk(bkI − A)−1}k∈Z is bounded.

For f ∈ Cs
2π(R; X) let

||f ||s = sup{||f(t)− f(t′)||
|t− t′|s : t, t′ ∈ [0, 2π], t 6= t′}+ ‖f‖∞.

Then Cs
2π(R; X) under the above norm is a Banach space. We define

C1+s
2π (R; X) = {f ∈ C1(0, 2π; X) : f is 2π -periodic and f ′ ∈ Cs

2π(R; X)},
and

C2+s
2π (R; X) = {f ∈ C2(0, 2π; X) : f is 2π -periodic and f ′′ ∈ Cs

2π(R; X)}.
Definition 3.5. Let 0 < s < 1. A function u ∈ C2+s

2π (R; X) is called a strong
Cs

2π-solution of (1.1) if u(t) ∈ D(A), u′(t) ∈ D(A) and (1.1) holds for all t ∈ [0, 2π].

The advantage in the following result, compared with Theorem 2.11, is that the
multiplier theorems used do not require any restriction on the Banach space X, in
contrast to the Lp results which depended upon the UMD property.

Theorem 3.6. Let A be a closed linear operator defined on a Banach space X. The
following assertions are equivalent:

(i) { −k2

a+iαk
}k∈Z ⊂ ρ(A) and supk || −k2

a+iαk
( −k2

a+iαk
I − A)−1|| < ∞.

(ii) For every f ∈ Cs
2π(R; X) there exists a unique strong Cs

2π-solution of (1.1)
such that u′′, Au, Au′ ∈ Cs

2π(R; X), and u′ ∈ Cs
2π(R; D(A)).

The proof follows the same lines as the proof of Theorem 2.11 in Section 2. We
omit the details.
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Example 3.7.

Let A the operator of multiplication by a real-valued function m(x) on Lp(Ω, µ), 1 ≤
p ≤ ∞. We assume that 0 ∈ ρ(A) and α 6= 0. This implies that { −k2

a+iαk
}k∈Z ⊆ ρ(A).

We show that the estimate supk || −k2

a+iαk
( −k2

a+iαk
I − A)−1|| < ∞ is satisfied. In fact, if

Af(x) = m(x)f(x), f ∈ Lp(Ω, µ) where m(x) ∈ R, a.e. x ∈ Ω, then we have

||( −k2

a + iαk
I − A)−1|| = ess− sup

x∈Ω
|( −k2

a + iαk
−m(x))−1|

= ess− sup
x∈Ω

|(−k2(a− iαk)

a2 + α2k2
−m(x))−1|.

But |(−k2(a− iαk)

a2 + α2k2
−m(x))−1| ≤ a2 + α2k2

|αk3| and thus,

sup
k 6=0

‖ −k2

a + iαk
(
−k2

a + iαk
I − A)−1‖ ≤ sup

k 6=0
(

k2

|a + iαk|
a2 + α2k2

|αk3| )

≤ sup
k 6=0

√
a2 + α2k2

|α||k| < ∞.

For a more concrete example, let A be the operator considered at the end of Sec-
tion 2, that is, the Laplace operator on a bounded domain Ω of RN with Dirichlet
boundary conditions defined through quadratic forms. Then one can define a family
of closed operators Ap on the spaces Lp(Ω), 1 ≤ p < ∞ consistent with A (A = A2.)
These operators generate analytic semigroups of angle π

2
on Lp(Ω). The same is

true for the spaces C0(Ω) provided that Ω be regular in the sense of Wiener (see
for instance [4, Chapter 6]). We refer to Pazy [29] and Davies [15] for a complete
presentation which includes more general elliptic operators. The above results apply
to all these cases.

We recall the definition of periodic Besov spaces. Let S be the Schwartz space
on R, S ′ be the space of all tempered distributions on R and D′(T; X) the space
of X−valued 2π−periodic distributions. Let Φ(R) be the set of all systems φ =
{φj}j≥0 ⊂ S satisfying

supp(φ0) ⊂ [−2, 2]

supp(φj) ⊂ [−2j+1,−2j−1] ∪ [2j−1, 2j+1], j ≥ 1
∑
j≥0

φj(t) = 1, t ∈ R

and for α ∈ N ∪ {0}, there exists Cα > 0 such that

(3.3) sup
j≥0,x∈R

2αj||φ(α)
j (x)|| ≤ Cα.
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That such systems exist is a well known fact which is related to the Littlewood-
Paley decomposition (see e.g. [2], [3], [4, Chapter 8], [7])).

Let 1 ≤ p, q ≤ ∞, s ∈ R and φ = (φj)j≥0 ∈ Φ(R). The X−valued periodic Besov
spaces are defined by

Bs,φ
p,q = {f ∈ D′(T; X) : ||f ||Bs,φ

p,q
= (

∑
j≥0

2sjq||
∑

k∈Z
ek ⊗ φj(k)f̂(k)||qp)1/q < ∞}.

The space Bs,φ
p,q is independent of φ ∈ Φ(R) and the norms || · ||Bs,φ

p,q
are equivalent.

As a consequence, we will denote || · ||Bs,φ
p,q

simply by || · ||Bs
p,q

. We refer to the paper

[7, section 1] for more details.
In the context of Besov spaces, using the above techniques, one can establish the

following theorem.

Theorem 3.8. Let 1 ≤ p, q ≤ ∞ and s > 0. Let A be a closed linear operator
defined on a Banach space X. The following assertions are equivalent:

(i) { −k2

a+iαk
}k∈Z ⊂ ρ(A) and supk ‖ −k2

a+iαk
( −k2

a+iαk
I − A)−1‖ < ∞.

(ii) For every f ∈ Bs
p,q(T; X) there exists a unique strong Bs

p,q-solution of (1.1)
such that u′′, Au, Au′ ∈ Bs

p,q(T; X), and u′ ∈ Bs
p,q(T; D(A)).

Here, the notion of Bs
p,q-solution is defined in the same way as Lp−solution and

Cs−solution in Definition 2.9 and Definition 3.5 respectively. In this case, one uses
the analogue of Theorem 3.3 (see [7, Theorem 4.5]), along with [25, Proposition 3.4].

We remark that the above example applies to this case as well. For more on
vector-valued Besov spaces, we refer to Arendt Batty and Bu [7]. A result similar
to Theorem 3.8 was proved in [25]. Operator-valued Fourier multipliers on Besov
spaces built on Lp(R; X) were studied by Amann [3].

We now consider a more general class of examples which includes elliptic equa-
tions.

Let us first recall that a linear operator A defined on X is called non-negative if
(−∞, 0) ⊂ ρ(A) and there exists M > 0 such that

(3.4) ‖λR(λ,A)‖ ≤ M, λ < 0.

A closed linear operator A is said to be positive if it is non-negative and if, in
addition, 0 ∈ ρ(A). For further information on positive operators we refer to the
recent monograph by Martinez-Sanz [27].

It is well known that the above estimate implies that there exists θ ∈ (0, π) such
that Σθ := {z ∈ C, |arg(z)| > π − θ} ⊂ ρ(A) and

(3.5) ‖λR(λ, A)‖ ≤ M, λ ∈ Σθ.

If the operator −A generates a bounded strongly continuous semigroup, then A
is a non-negative operator and one can take in this case any θ such that θ > π

2
. In
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case −A generates a bounded analytic semigroup, the above estimate holds on a
(left) sector of angle larger than π

2
(thus θ < π

2
is allowed).

We have the following:

Corollary 3.9. Suppose that a > 0 and 0 < s < 1 and let Let A be a closed linear
operator defined on a Banach space X.

(1) Assume that 0 ∈ ρ(A) and −A is the generator of a bounded analytic semi-
group (which need not be of class C0). Then, for every f ∈ Cs

2π(R; X) there
exists a unique strong Cs

2π-solution of (1.1) such that u′ ∈ Cs
2π(R; D(A)) and

u′′, Au, Au′ ∈ Cs
2π(R; X).

(2) Assume that α = 0. Then the conclusion of (1) holds for any positive operator
A.

Proof. To prove (1), it is enough to observe that −k2

a+iαk
= −k2a

a2+α2k2 + i αk3

a2+α2k2

and that the real part is negative if k 6= 0. As for (2), we note that in that case,

bk := −k2

a+iαk
= −k2

a
< 0 for k 6= 0 and thanks to (3.4) and the fact that 0 ∈ ρ(A), the

estimate in Theorem 3.8 is satisfied.
¤

This corollary applies to a large class of elliptic operators with bounded measur-
able coefficients in Lp(Ω).

Theorems of this type were obtained using the method of sums of operators. See
the monographs [2], [30] by Prüss and Amann respectively. Our treatment here is
particularly simple and does not involve the condition of bounded imaginary powers.

For the case a < 0, we have the following:

Corollary 3.10. Assume that a < 0, α 6= 0, 0 ∈ ρ(A), 0 < s < 1 and A generates
a bounded analytic semigroup of angle π

2
. Then the conclusion of Corollary 3.9 holds.

Proof. To see this observe that the real part of −k2

a+iαk
= −k2a

a2+α2k2 + i αk3

a2+α2k2 is
positive if k 6= 0. Therefore estimate in Theorem 3.8, (i) is satisfied.

¤
Similar results hold true in the context of Besov spaces. These results apply

to general elliptic operators on the Lp−spaces (see [15]). For elliptic operators on
spaces of continuous functions, we refer to [4, Chapter 6 ], [29, Section 7.3].

4. Mild periodic solutions: Case α = 0

In this section we study mild solutions of the abstract Cauchy problem (1.1) in
case α = 0 and a = 1 that is,

(4.1) u′′(t)− Au(t) = f(t), 0 ≤ t ≤ 2π.

Strong solutions of problem (4.1) where characterized by Arendt and Bu (see [6,
Section 6]) but the study of mild periodic solutions was left open. However, we note
that mild solutions in the non-periodic case were studied recently by Schweiker [33]
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for the inhomogeneous problem with f ∈ BUC(R, X). In this and the next section
we complete the study initiated in [6].

We recall from [6, Theorem 3.6] that, if A is the generator of a C0 semigroup
{T (t)}t≥0 and 1 ≤ p < ∞ then the existence of a unique mild solution for the
Cauchy problem

{
u′(t) = Au(t) + f(t), t ∈ (0, 2π)
u(0) = u(2π)

is equivalent to the following: iZ ⊂ ρ(A) and (R(ik, A))k∈Z is an (Lp, Lp) -multiplier.
On the other hand, by a result of Prüss [31], this is also equivalent to have: 1 ∈
ρ(T (2π)).

Formally, if we consider (4.1) with periodic boundary conditions and use the
Fourier series, then we get

û(k) = R(−k2, A)f̂(k).

By a result of Cioranescu-Lizama [11], it is known that if A is the generator of
a cosine function {C(t)}t∈R then the existence of a unique mild periodic solution of
class C1 for (4.1) is characterized by the condition 1 ∈ ρ(C(2π)) which , in Hilbert
spaces, is equivalent to the boundedness of the set

{kR(−k2, A)}k∈Z.

On the other hand, if S(t) denotes the associated sine function then Schüler
[32] proved that existence of mild periodic solutions for (4.1) (not of class C1) is
characterized by the condition that S(2π) : X → E is invertible. Here E denotes the
set E = {x ∈ X : t → C(t)x is once continuously differentiable }, which is a Banach
space under an appropriate norm (cf. Fattorini [21]). Moreover, Schüler proved that
the above description is equivalent, also in Hilbert spaces, to the boundedness of the
set

{R(−k2, A)}k∈Z.

The above results, give us to consider two notions of mild solutions for the problem
(4.1) in order to obtain the corresponding analogues to the Arendt-Bu result. In
order to do that, we slightly modify the notion of mild solutions to the case that
A is not necessarily the generator of a cosine function, obtaining characterizations
which are analogues to [6, Proposition 3.2].

We begin with our first definition of the notion of ”2-times mild” solution.

Definition 4.1. For given f ∈ L1
loc(R; X), a function u ∈ C(0, 2π; X) differentiable

at t = 0 is called a mild solution of the problem (4.1) if
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(4.2)





∫ t

0

(t− s)u(s)ds ∈ D(A),

u(t) = A

∫ t

0

(t− s)u(s)ds +

∫ t

0

(t− s)f(s)ds + u(0) + tu′(0),

for all 0 ≤ t ≤ 2π.

We note that our definition is a natural extension of classical ones. In [4, p. 120
and p. 206] for example, the definition of mild solution for (4.1) uses only (4.2)
alone, in the case where f ≡ 0. Here we consider the nonhomogeneous problem.

Lemma 4.2. Let gf (t) =
∫ t

0
(t − s)f(s)ds. Then the Fourier coefficients of gf are

given by:

ĝf (k) =
−1

2πik
gf (2π) +

1

k2
f̂(0)− 1

k2
f̂(k),

for all k 6= 0.

Proof. Note that gf (0) = g′f (0) = 0. We have:

ĝf (k) =
1

2π

∫ 2π

0

e−iktgf (t)dt

=
−1

2πik
gf (2π) +

1

2πik

∫ 2π

0

e−iktg′f (t)dt

=
−1

2πik
gf (2π) +

1

2πik
[
−1

ik

∫ 2π

0

f(s)ds +
1

ik

∫ 2π

0

e−iktf(t)dt]

=
−1

2πik
gf (2π) +

1

k2
f̂(0)− 1

k2
f̂(k).

The proof is complete.
¤

Remark 4.3.

Recall from Section 3 that we denote by C2π(R; X) the space of all continuous
and 2π-periodic functions with u(0) = u(2π). By differentiability of a function u ∈
C2π(R; X) at t = 0 or t = 2π we mean that the following limits exist and are equal

lim
t→0+

u(t)− u(0)

t
= lim

t→2π−
u(t)− u(2π)

t− 2π
.

We denote this by u′(0) = u′(2π).

Theorem 4.4. Let f ∈ L1
2π(R; X) and let u ∈ C2π(R; X) be differentiable at t = 0.

Assume that D(A) = X. Then u is a mild solution of problem (4.1) satisfying
u′(0) = u′(2π) if and only if
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(4.3) û(k) ∈ D(A) and (−k2I − A)û(k) = f̂(k),

for all k ∈ Z.

Proof. Assume that u is a mild solution. Letting t = 2π in (4.2) we get that∫ 2π

0
(2π − s)u(s)ds = gu(2π) ∈ D(A) and Agu(2π) + gf (2π) = −2πu′(0).

Consider the functions v(t) =
∫ t

0
(t − s)u(s)ds = gu(t) and w(t) = u(t) − gf (t) −

u(0)− tu′(0). Then by [6, Lemma 3.1] we obtain ĝu(k) ∈ D(A) and Aĝu(k) = ŵ(k).
Since u is differentiable at t = 2π, u′(2π) exists and hence by (4.2), closedness of

A and using the fact that u′(0) = u′(2π) we obtain û(0) = 1
2π

∫ 2π

0
u(s)ds ∈ D(A)

and Aû(0) = −f̂(0).
Now, by Lemma 4.2 we have for k 6= 0, ĝu(k) = −1

2πik
gu(2π)+ 1

k2 û(0)− 1
k2 û(k). Since

û(0) ∈ D(A) we obtain û(k) ∈ D(A) and hence Aĝu(k) = −1
2πik

Agu(2π) + 1
k2 Aû(0)−

1
k2 Aû(k).

On the other hand, ŵ(k) = û(k)− ĝf (k) + 1
ik

u′(0) = û(k) + 1
2πik

gf (2π)− 1
k2 f̂(0) +

1
k2 f̂(k) + 2π

2πik
u′(0). Therefore −1

k2 Aû(k) = û(k) + 1
k2 f̂(k), for all k 6= 0. This proves

(4.3) for all k ∈ Z\{0}. Since we have already proved −Aû(0) = f̂(0) we obtain
(4.3) for all k ∈ Z.

Conversely, assume that (4.3) holds. Let x∗ ∈ D(A∗), where A∗ is the adjoint of
A. By [4, Proposition B.10], it suffices to show that

∫ t

0

(t− s) < u(s), A∗x∗ > ds =< u(t), x∗ > − < u(0), x∗ >

− < tu′(0), x∗ > −
∫ t

0

(t− s) < f(s), x∗ > ds.

Define w(s) =< u(s), A∗x∗ > + < f(s), x∗ > . Then by (4.3) we obtain

(4.4) ŵ(k) =< û(k), A∗x∗ > + < f̂(k), x∗ >= −k2 < û(k), x∗ >,

for all k ∈ Z.
Define h(t) = gw(t)− < u(t), x∗ > + < tu′(0), x∗ > . Then, by (4.4) we obtain

ŵ(0) = 0 and hence ĥ(k) = −1
2πik

gw(2π) + 1
k2 ŵ(0) − ( 1

k2 ŵ(k)+ < û(k), x∗ >) − 1
ik

<

u′(0), x∗ >= −1
2πik

gw(2π)− 1
ik

< u′(0), x∗ >, for all k 6= 0.
We conclude from the uniqueness that h(t)− t

2π
gw(2π)−t < u′(0), x∗ > is constant;

i.e h(t) = t
2π

gw(2π) + t < u′(0), x∗ > − < u(0), x∗ > since gw(0) = 0. Hence

(4.5) gw(t)− < u(t), x∗ >=
t

2π
gw(2π)− < u(0), x∗ >
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for all t ∈ [0, 2π]. Since u(t) is differentiable at t = 0 from (4.5)we obtain g′w(0)− <
u′(0), x∗ >= 1

2π
gw(2π). But g′w(0) = 0, and hence gw(2π) = −2π < u′(0), x∗ > .

Therefore (4.5) together with the definition of w yield equation (4.2).
Since u is differentiable at t = 2π, from (4.5) we also obtain g′w(2π)− < u′(2π), x∗ >=

1
2π

gw(2π) which implies û(0) ∈ D(A) and A
∫ 2π

0
u(s)ds +

∫ 2π

0
f(s)ds − u′(2π) =

−u′(0). But, by (4.3) with k = 0 we have Aû(0)+f̂(0) = 0. Therefore u′(0) = u′(2π),
and the theorem is proved.

¤
In case A generates a strongly continuous cosine family, mild solutions can be

described differently.
Recall that if A generates a cosine function C(t) and S(t) :=

∫ t

0
C(s)ds is the

associated sine function, then for x ∈ X,
∫ t

0
S(s)xds ∈ D(A) and

(4.6) A

∫ t

0

S(s)xds = C(t)x− x, t ≥ 0.

Furthermore, recall that C(t) and therefore S(t) are exponentially bounded: there
exist M ≥ 1 and ω ≥ 0 such that

‖C(t)‖+ ‖S(t)‖ ≤ Meωt, t ≥ 0.

We shall also make use of the set

E = {x ∈ X : t → C(t)x is once continuously differentiable },
which under the norm ||x||E = ||x||+ sup0≤t≤1 ||AS(t)x|| is a Banach space (cf. [22]
and [4, Section 3.14 ]).

Observe that if (x, y) ∈ D(A)×E and f is continuously differentiable on [0, 2π],
then the formula

(4.7) u(t) = C(t)x + S(t)y +

∫ t

0

S(t− s)f(s)ds,

defines a classical solution of (4.1) (see e.g. Travis and Webb [35, Proposition 2.4]).
If (x, y) ∈ X ×X and f ∈ L1

loc(R; X) we may consider (4.7) as providing a ”mild”
solution to (4.1) with u(0) = x and u′(0) = y; this mild solution is of class C1 if and
only if (x, y) ∈ E ×X.

In the proof of Theorem 4.6 below, we will need to establish the following lemma.

Lemma 4.5. Assume that A generates a strongly continuous cosine function C(t)

and let f ∈ Lp(0, 2π; X), 1 ≤ p < ∞ or f ∈ C(0, 2π; X). Then
∫ t

0
(t− s)

∫ s

0
S(t−

σ)f(σ)dσds ∈ D(A) and

(4.8) A

∫ t

0

(t− s)

∫ s

0

S(s− σ)f(σ)dσds =

∫ t

0

S(t− s)f(s)ds−
∫ t

0

(t− s)f(s)ds

for all t ≥ 0.
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Proof. To see this, we approximate f with a sequence of smooth functions, say ,
continuously differentiable, fn with values in X. Then by [35, Proposition 2.4], we

have
∫ t

0
S(t− s)fn(s)ds ∈ D(A) and

A

∫ t

0

S(t− s)fn(s)ds =
d2

dt2
(

∫ t

0

S(t− s)fn(s)ds)− fn(t), 0 ≤ t ≤ 2π.

Integrating this relation, we obtain, using the fact that A is closed,

(4.9) A

∫ t

0

(t− s)

∫ s

0

S(s− σ)fn(σ)dσds =

∫ t

0

S(t− s)fn(s)ds−
∫ t

0

(t− s)fn(s)ds

for 0 ≤ t ≤ 2π. Let n, m ∈ N and t ≥ 0. For the two integrals appearing in the right
hand side of (4.9) we have, with t ≥ 0 fixed:

‖
∫ t

0

(t− s)(fn(s)− fm(s))ds‖ ≤
∫ t

0

(t− s)‖fn(s)− fm(s)‖ds

and

‖
∫ t

0

S(t− s)(fn(s)− fm(s))ds‖ ≤ M

∫ t

0

(t− s)eω(t−s)‖fn(s)− fm(s)‖ds.

For the integral in the left hand side we have the following estimate:

‖
∫ t

0

(t− s)

∫ s

0

S(t− σ)(fn(σ)− fm(σ))ds‖

≤ M

∫ t

0

(t− s)

∫ s

0

eω(s−σ)‖fn(σ)− fm(σ)‖dσds.

Letting n go to infinity in (4.9) and appealing to the Closed Graph Theorem, we
obtain the desired relation.

¤

Theorem 4.6. Let A be the generator of a strongly continuous cosine function C(t)
and denote by S(t) the associated sine function. For 1 ≤ p < ∞ the following are
equivalent:

(i) For any f ∈ Lp
2π(R; X) there exists a unique (x, y) ∈ X × X such that u

given by (4.7) is differentiable at t = 0 and 2π-periodic, i.e. u(0) = u(2π) and
u′(0) = u′(2π).

(ii){−k2 : k ∈ Z} ⊆ ρ(A) and (R(−k2, A))k∈Z is an (Lp, Lp)-multiplier.
(iii) S(2π) ∈ B(X, E) is invertible.

Proof. (i) → (ii). By hypothesis the function u given by (4.7) is in C2π(R; X)
and differentiable at t = 0. In particular u(0) = u(2π) = x, u′(0) exists and

u′(0) = u′(2π) = y. Moreover, D(A) = X since A generates a cosine function on X.
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From the properties of cosine functions, it is clear that
∫ t

0
(t− s)u(s)ds ∈ D(A) and

by Lemma 4.5 we obtain

A

∫ t

0

(t− s)u(s)ds = A

∫ t

0

(t− s)C(s)xds + A

∫ t

0

(t− s)S(s)yds

+ A

∫ t

0

(t− s)

∫ s

0

S(s− σ)f(σ)dσds

= C(t)x− x + S(t)y − ty

+

∫ t

0

S(t− s)f(s)ds−
∫ t

0

(t− s)f(s)ds

= u(t)− u(0)− tu′(0)−
∫ t

0

(t− s)f(s)ds

This proves (4.2), that is u is a mild solution of the problem (4.1).
Since u′(0) = u′(2π) by hypothesis, it follows from Theorem 4.4 that û(k) ∈ D(A)

and (−k2 − A)û(k) = f̂(k) for all k ∈ Z.
Proceeding as in the proof of Theorem 2.11 we obtain {−k2}k∈Z ⊂ ρ(A). Let

f ∈ Lp(0, 2π; X). It follows that û(k) = R(−k2; A)f̂(k) for all k ∈ Z. Now the claim
follows from [6, Proposition 1.1].

(ii) → (i). Let f ∈ Lp
2π(R; X) and define fn = 1

n+1

∑n
m=0

∑m
k=−m ek ⊗ f̂(k),

and un = 1
n+1

∑n
m=0

∑m
k=−m ek ⊗ R(−k2, A)f̂(k). The hypothesis implies that u =

limn→∞ un exists in Lp
2π(R; X). Clearly the functions un satisfy u′′n(t) = Aun(t) +

fn(t) as strong solutions. Hence, by uniqueness of Fourier coefficients, un(t) satisfies

un(t) = C(t)un(0) + S(t)u′n(0) +

∫ t

0

S(t− s)fn(s)ds

and

(4.10) u′n(t) = C ′(t)un(0) + C(t)u′n(0) +

∫ t

0

C(t− s)fn(s)ds.

Since un(0) = un(2π) and u′n(0) = u′n(2π) we obtain

(I − C(2π))un(0) = S(2π)u′n(0) +

∫ 2π

0

S(2π − s)fn(s)ds

and

(4.11) (I − C(2π))u′n(0) = C ′(2π)un(0) +

∫ 2π

0

C(2π − s)fn(s)ds

respectively. Obviously
∫ t

0
S(t − s)fn(s)ds → ∫ t

0
S(t − s)f(s)ds as n → ∞ and∫ t

0
C(t− s)fn(s)ds → ∫ t

0
C(t− s)f(s)ds as n → ∞, uniformly for t ∈ [0, 2π]. Using

the arguments in [32, Theorem 3] we can deduce that un(0) and u′n(0) converge to
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some x, y in X, respectively, as n → ∞. More precisely, since by the hypothesis
0 ∈ ρ(A), we can define

un(0) = (I − C(2π))un(0) + C(2π)un(0)

=
1

2

∫ 2π

0

(S(2π − s) + S(s))fn(s)ds + 2

∫ 2π

0

C(2π − s)un(s)ds

− 1

2
A−1

∫ 2π

0

(C(s) + C(2π − s))fn(s)ds

− 1

2

∫ 2π

0

(S(s)− S(2π − s))fn(s)ds−
∫ 2π

0

∫ t

0

S(2π − s)fn(s)ds,

and

u′n(0) = −1

2
S(2π)

∫ 2π

0

(C(s) + C(2π − s))fn(s)ds

+
1

2

∫ 2π

0

(S(2π − s) + S(s))fn(s)ds

+

∫ 2π

0

C(s)

∫ s

0

C(s− τ)(fn(τ) + fn(−τ))dτds

−
∫ 2π

0

∫ s

0

C(τ)fn(τ)dτds.

We conclude that u verifies the formula

u(t) = C(t)x + S(t)y +

∫ t

0

S(t− s)f(s)ds,

and satisfy u(0) = u(2π). Also from (4.11) we get that C ′(2π)un(0) converge. Then
by (4.10) we obtain that u′(2π) exists. Hence u is differentiable at t = 0 and
u′(0) = u′(2π).

(iii) → (i). Let f ∈ Lp(0, 2π; X). The hypothesis implies 0 ∈ ρ(A) by [32, Lemma
3]. Choose

x = −1

2
S(2π)−1A−1

∫ 2π

0

[C(s) + C(2π − s)]f(s)ds

and

y =
1

2
S(2π)−1

∫ 2π

0

[S(s)− S(2π − s)]f(s)ds.

Note that x and y are well defined as elements of X.
Let u(t) := C(t)x + S(t)y +

∫ t

0
S(t − s)f(s)ds. Then u(0) = u(2π). Next, define

v(2π) = AS(2π)x + C(2π)y +
∫ 2π

0
S(2π− s)f(s)ds. Then u′(2π) = v(2π) exists and,

by periodicity of u, we conclude that u′(0) exists and satisfy u′(0) = u′(2π).
(i) → (iii). Follows from [32, Theorem 1].

¤
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An immediate consequence of Theorem 4.6 is the following result in Hilbert spaces
(see also [32, Theorem 1 and Theorem 3 ]).

Corollary 4.7. Let H be a Hilbert space and let A be the generator of a strongly
continuous cosine family C(t) and denote by S(t) the associated sine function. For
1 ≤ p < ∞ the following are equivalent:

(i) For any f ∈ Lp(0, 2π; H) there exists a unique (x, y) ∈ H × H such that u
given by (4.7) is differentiable at t = 0 and u(0) = u(2π) , u′(0) = u′(2π).

(ii){−k2 : k ∈ Z} ⊆ ρ(A) and (R(−k2, A))k∈Z is an (Lp, Lp)-multiplier.
(iii) S(2π) ∈ B(H,E) is invertible.
(iv) {−k2 : k ∈ Z} ⊆ ρ(A) and supk∈Z ||R(−k2; A)|| < ∞.

5. Mild periodic solutions of class C1

In the present section, we discuss another notion of mild solution for the undamped
equation (that is, α = 0). Since a strong solution must be twice differentiable (in the
classical or Sobolev sense), it is natural to examine solutions which do not require
this condition. We also obtain a characterization in the case where the operator A
generates a cosine function on X.

Definition 5.1. For f ∈ L1
loc(R, X), a function u ∈ C1(0, 2π; X) is called a mild

solution of class C1 of problem (4.1) if

(5.1)





∫ t

0

u(s)ds ∈ D(A),

u′(t) = A

∫ t

0

u(s)ds +

∫ t

0

f(s)ds + u′(0),

for all 0 ≤ t ≤ 2π.

We establish the following.

Theorem 5.2. Let f ∈ L1
2π(R, X) and u ∈ C1(0, 2π; X) be such that u(0) = u(2π).

Assume that D(A) = X. Then u is a mild solution of class C1 for the problem (4.1)
such that u′(0) = u′(2π) if and only if

(5.2) û(k) ∈ D(A) and (−k2 − A)û(k) = f̂(k),

for all k ∈ Z.

Proof. Assume that u is a mild solution of class C1. Letting t = 2π in (5.1)

obtain

∫ 2π

0

u(s)ds ∈ D(A) and

u′(2π) = A

∫ 2π

0

u(s)ds +

∫ 2π

0

f(s)ds + u′(0).
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Hence −Aû(0) = f̂(0), proving (5.2) for k = 0.
As in the proof of Theorem 4.4 we obtain by (5.1) û(k) ∈ D(A) and

ikû(k) + 1
2π

(u(2π)− u(0)) = A[ 1
ik

û(k)− 1
ik

û(0)] + 1
ik

f̂(k)− 1
ik

f̂(0)

for all k 6= 0. Hence −k2û(k)− Aû(k) = f̂(k) which proves (5.2) for all k 6= 0.
Conversely, assume that (5.2) holds. Let x∗ ∈ D(A∗). It suffices to show that

< u′(t), x∗ > =

∫ t

0

< u(s), A∗x∗ > ds +

∫ t

0

< f(s), x∗ > ds

+ < u′(0), x∗ > .

Define w(s) =< u(s), A∗x∗ > + < f(s), x∗ > . Then by (5.2) we have ŵ(k) =
−k2 < û(k), x∗ > . In particular ŵ(0) = 0. Next, also define h(t) =< u′(t), x∗ > .

Then ĥ(k) =< ikû(k), x∗ >= 1
ik

ŵ(k) = 1
ik

ŵ(k) − 1
ik

ŵ(0), for all k 6= 0. It follows

that h(t)− ∫ t

0
w(s)ds is constant; i.e. h(t) =

∫ t

0
w(s)ds+ < u′(0), x∗ > . This proves

that u is mild solution. Letting t = 2π we get u′(2π) = Aû(0)+ f̂(0)+u′(0) = u′(0),
proving the theorem.

¤

Theorem 5.3. Let A be the generator of a strongly continuous cosine family C(t)
and let 1 ≤ p < ∞. Then the following are equivalent:

(i) For any f ∈ Lp(0, 2π; X) there exists a unique (x, y) ∈ E × X such that u
given by (4.7) is 2π-periodic, i.e. u(0) = u(2π) and u′(0) = u′(2π).

(ii){−k2 : k ∈ Z} ⊆ ρ(A) and (kR(−k2, A))k∈Z is an (Lp, Lp)-multiplier.
(iii) I − C(2π) ∈ B(X; X) is invertible.

Proof. (i) → (ii). Since x ∈ E, the function u given by (4.7) is C1, and∫ t

0
u(s)ds ∈ D(A). Also, u′(t) = AS(t)x + C(t)y +

∫ t

0
C(t− s)f(s)ds and we have

A

∫ t

0

u(s)ds = A

∫ t

0

C(s)xds + A

∫ t

0

S(s)yds + A

∫ t

0

∫ σ

0

S(σ − s)f(s)dσds

= AS(t)x + C(t)y − y +

∫ t

0

C(t− s)f(s)ds−
∫ t

0

f(s)ds

= u′(t)− y −
∫ t

0

f(s)ds = u′(t)− u′(0)−
∫ t

0

f(s)ds.

Hence, by Theorem 5.2, û(k) ∈ D(A) and (−k2−A)û(k) = f̂(k) for all k ∈ Z. As
in the proof of Theorem 2.11 we obtain {−k2}k∈Z ⊂ ρ(A). Let f ∈ Lp(0, 2π; X). We

have û(k) = R(−k2; A)f̂(k) for all k ∈ Z, and because u is of class C1, also û′(k) =

ikR(−k2; A)f̂(k) for all k ∈ Z, where u′ ∈ Lp(0, 2π; X). Hence (kR(−k2; A))k∈Z is
an (Lp, Lp)-multiplier.
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(ii) → (i). Let f ∈ Lp(0, 2π; X) and define

fn =
1

n + 1

n∑
m=0

m∑

k=−m

ek ⊗ f̂(k), n ∈ N.

By hypothesis and [6, Lemma 2.2], (R(−k2; A))k∈Z is an (Lp, H1,p)-multiplier. Define

un = 1
n+1

∑n
m=0

∑m
k=−m ek ⊗ R(−k2, A)f̂(k), n ∈ N. The hypothesis implies that

u = limn→∞ un exists in H1,p(0, 2π; X). Hence u′ = limn→∞ u′n exists in Lp(0, 2π; X),
where

u′n =
1

n + 1

n∑
m=0

m∑

k=−m

ek ⊗ ikR(−k2, A)f̂(k).

Clearly the functions un are 2π periodic on R, u′n(0) = u′n(2π) and u′′n(t) = Aun(t)+
fn(t) for all n ∈ Z. Hence, un(t) satisfies

un(t) = C(t)un(0) + S(t)u′n(0) +

∫ t

0

S(t− s)fn(s)ds.

Obviously
∫ t

0
S(t − s)fn(s)ds → ∫ t

0
S(t − s)f(s)ds as n → ∞, uniformly for

t ∈ [0, 2π]. As in the proof of Theorem 4.6 or, alternatively, using the arguments as
in [11, Theorem 2] we can deduce that un(0) and u′n(0) converge to some x ∈ E and
y ∈ X, respectively, as n → ∞. More precisely to verify that x ∈ E, we make use
of the identity

AS(t)un(0) = −C(t)u′n(0)− 1

t
S(t)u′n(0) +

2

t

∫ t

0

C(t− s)u′n(s)ds

− 2

t

∫ t

0

C(t− s)

∫ s

0

C(s− τ)fn(τ)dτds.

Observe that
∫ t

0
C(t − s)u′n(s)ds → ∫ t

0
C(t − s)u′(s)ds as n → ∞, uniformly for

t ∈ [0, 2π]. Hence the term on the right side of the above equality converges uniformly
for t ∈ [0, 2π]. It follows that {AS(t)un(0)} converges as n → ∞, uniformly for
t ∈ [0, 2π]. Thus {un(0)} is a Cauchy sequence in E endowed with its norm as
defined in the previous section. This proves that x ∈ E.

We conclude that

u(t) = C(t)x + S(t)y +

∫ t

0

S(t− s)f(s)ds,

satisfying u(0) = u(2π). Moreover u is C1 since x ∈ E. Hence u′(0) = u′(2π).
Uniqueness of the solution follows from (5.2).

(iii) → (i). Let f ∈ Lp
2π(R; X). Choose

x = (I − C(2π))−1S(π)

∫ π

0

C(π − s)(f(s) + f(−s))ds
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and

y = (I − C(2π))−1AS(π)

∫ π

0

S(π − s)(f(s)− f(−s))ds.

Define u(t) = C(t)x + S(t)y +
∫ t

0
S(t − s)f(s)ds. Then u(0) = u(2π). Since x ∈

ImS(π) ( and ImS(π) ⊆ E, see [35, Proposition 2.2]) it results that (x, y) ∈ E×X.
It follows that u is actually of class C1 and u′(0) = u′(2π).

(i) → (iii). Follows from [11, Theorem 1].
¤

As a consequence of the foregoing theorem, we obtain the following characteriza-
tion in Hilbert spaces (see also [11, Theorem 2]).

Corollary 5.4. Let H be a Hilbert space and A the generator of a strongly contin-
uous cosine family C(t) and let 1 ≤ p < ∞. Then the following are equivalent:

(i) For any f ∈ Lp(0, 2π; H) there exists a unique (x, y) ∈ E × H such that u
given by (4.7) is of class C1 and u(0) = u(2π) , u′(0) = u′(2π).

(ii){−k2 : k ∈ Z} ⊆ ρ(A) and (kR(−k2, A))k∈Z is an (Lp, Lp)-multiplier.
(iii) 1 ∈ ρ(C(2π))
(iv) {−k2 : k ∈ Z} ⊆ ρ(A) and supk∈Z ||kR(−k2; A)|| < ∞.

Example 5.5.

Let Ω be the cube Ω = {x = (x1, x2, ... xN), 0 < xj < L, 1 ≤ j ≤ N} ⊂ RN . Let
A be the Laplacian in L2(Ω) with Dirichlet boundary conditions as defined at the
end of Section 2. Then A is self-adjoint with compact resolvent and the eigenvalues
of A are given by: λn = −π2L−2(n2

1 + n2
2 + ... + n2

N) where n = (n1, n2, ..., nN) and
nj ∈ N. By the spectral theorem for self-adjoint operators, one sees that A is the
generator of a cosine function C(t) (see e.g. [4, Example 3.14.16]) Moreover, the
eigenvalues of C(t) are given by µn(t) = cos(t

√−λn) for n ∈ NN . When t = 2π, the
eigenvalues are µn(2π) = cos(2π

√−λn). It follows that condition (iii) of Corollary

5.4 is satisfied if 1 /∈ {cos(2π
√−λn), n ∈ N}.

However, when N = 1, this condition is never satisfied. In fact, cos(2π
√−λn) =

cos(2π2

L
n) and if 2π

L
∈ Q, say 2π

L
= p

q
then 1 ∈ {cos(p

q
πn), n ∈ N}. On the other

hand, if 2π
L

/∈ Q, then the set {cos(p
q
πn), n ∈ N} is dense in [−1, 1]. This is easily

seen because in this case G := {2π2

L
k + 2mπ, k, m ∈ Z} is a dense subgroup of R.

In case N > 1, observe that λn = −π2L−2(n2
1 + n2

2 + ... + n2
N) = −π2L−2n2

1(1 +
n2

2

n2
1

+ ... +
n2

N

n2
1

). From this we see that the above analysis applies to this situation as

well.
As a result, condition (iii) of Corollary 5.4 is not satisfied by the operator A.

Example 5.6.
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Let γ ∈ R\{0}, ε > 0 with ε /∈ {k2, k ∈ N} and consider on L2(R) the operatorA

given by A =
∂2

∂x2
+ γ

∂

∂x
− ε with domain the Sobolev space H2(R). Taking Fourier

series we obtain F(Af)(ξ) = (−ξ2 + iγξ − ε)F(f)(ξ) for all f ∈ L2(R) and ξ ∈ R.
From this we see that A generates a cosine function. Actually, the corresponding
operator generates a cosine function on Lp(R), 1 ≤ p < ∞. This follows from a
perturbation argument (see [4, Corollary 3.14.13] or [22]). For k ∈ Z, |k(−k2 + ξ2 +

ε− iγξ)−1| = | k√
(k2 − ξ2 − ε)2 + γ2ξ2

|. The operator A is invertible. Now consider,

for k fixed, the function ϕ(ξ) =
k2

(k2 − ξ2 − ε)2 + γ2ξ2
. Then lim

|ξ|→∞
ϕ(ξ) = 0. The

critical points of ϕ are ξ = 0 with ϕ(0) = k2

(k2−ε)2
and ξ0 with ξ2

0 = k2 − ε − γ

2
for

which ϕ(ξ0) =
k2

γ2

4
+ γ2(k2 − ε− γ

2
)
, in case ξ2

0 = k2 − ε− γ

2
≥ 0. Using Plancherel’s

Theorem we obtain: supk 6=0 ‖k(−k2 − A)−1‖ ≤ M. So that Corollary 5.4 and hence
Corollary 4.7 both apply.
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