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Abstract

In this paper stochastic Volterra equations admitting exponentially bounded resol-
vents are studied. After obtaining convergence of resolvents, some properties for
stochastic convolutions are studied. Our main results provide sufficient conditions
for strong solutions to stochastic Volterra equations.
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1 Introduction

We deal with the following stochastic Volterra equation in a separable Hilbert
space H

X(t) = X0 +

t∫

0

a(t− τ) AX(τ)dτ +

t∫

0

Ψ(τ) dW (τ) , t ≥ 0 , (1)
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where X0 ∈ H, a ∈ L1
loc(R+) and A is a closed unbounded linear operator in

H with a dense domain D(A). The domain D(A) is equipped with the graph
norm | · |D(A) of A, i.e. |h|D(A) := (|h|2H + |Ah|2H)1/2, where | · |H denotes the
norm in H.

In this work the equation (1) is driven by a cylindrical Wiener process W and
Ψ is an appropriate process defined later. Let us emphasize that the results
obtained for cylindrical Wiener process W are valid for classical (genuine)
Wiener process, too.

Equation (1) arises, in the deterministic case, in a variety of applications
as model problems. Well-known techniques like localization, perturbation,
and coordinate transformation allow to transfer results for such problems to
parabolic integro-differential equations on smooth domains, see [16, Chapter
I, Section 5]. In these applications, the operator A typically is a differential
operator acting in spatial variables, like the Laplacian, the Stokes operator,
or the elasticity operator. The function a should be thought of as a kernel like
a(t) = e−ηttβ−1/Γ(β); η ≥ 0, β ∈ (0, 2). Equation (1) is an abstract stochastic
version of the mentioned deterministic model problems. The stochastic ap-
proach to integral equations has been recently used due to the fact that in
applications the level of accuracy for a given deterministic model not always
seem to be significantly changed with increasing model complexity. Instead,
the stochastic approach provides better results. A typical example is the use
of stochastic integral equations in rainfall-runoff models, see [9].

Our main results concerning (1), rely essentially on techniques using a strongly
continuous family of operators S(t), t ≥ 0, defined on the Hilbert space H
and called the resolvent (precise definition will be given below). Hence,
in what follows, we assume that the deterministic version of equation (1)
is well-posed, that is, admits a resolvent S(t), t ≥ 0. Our aim is to provide
sufficient conditions to obtain a strong solution to the stochastic equation (1).

This paper is organized as follows. In section 2 we prove the main deterministic
ingredient for our construction; this is an extension of results of [2] allowing
here that the operator A in (1) will be the generator of a C0-semigroup, not
necessarily of contraction type. Section 3 contains the main definitions and
concepts used in the paper. In Section 4 we compare mild and weak solu-
tions while in the last section we provide sufficient condition for stochastic
convolution to be a strong solution to the equation (1). We note that this is
an improvement of the known results about existence of strong solutions for
stochastic differential equations.
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2 Convergence of resolvents

In this section we recall some definitions connected with the deterministic
version of the equation (1), that is, the equation

u(t) =

t∫

0

a(t− τ) Au(τ)dτ + f(t), t ≥ 0, (2)

in a Banach space B. In (2), the operator A and the kernel function a are
the same as previously considered in the introduction and f is a B-valued
function.

Problems of this type have attracted much interest during the last decades,
due to their various applications in mathematical physics like viscoelasticity,
thermodynamics, or electrodynamics with memory, cf. [16].

By S(t), t ≥ 0, we denote the family of resolvent operators corresponding to
the Volterra equation (2), if it exists, and defined as follows.

Definition 1 (see, e.g. [16])
A family (S(t))t≥0 of bounded linear operators in B is called resolvent for
(2) if the following conditions are satisfied:

(1) S(t) is strongly continuous on R+ and S(0) = I;
(2) S(t) commutes with the operator A, that is, S(t)(D(A)) ⊂ D(A) and

AS(t)x = S(t)Ax for all x ∈ D(A) and t ≥ 0;
(3) the following resolvent equation holds

S(t)x = x +

t∫

0

a(t− τ)AS(τ)xdτ (3)

for all x ∈ D(A), t ≥ 0.

Necessary and sufficient conditions for the existence of the resolvent family
have been studied in [16]. Let us emphasize that the resolvent S(t), t ≥ 0,
is determined by the operator A and the function a, so we also say that the
pair (A, a) admits a resolvent family. Moreover, as a consequence of the strong
continuity of S(t) we have supt≤T ||S(t)|| < +∞ for any T ≥ 0.

We shall use the abbreviation (a ? f)(t) =
∫ t
0 a(t − s)f(s)ds, t ∈ [0, T ], for

the convolution of two functions.

Definition 2 We say that function a ∈ L1(0, T ) is completely positive on
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[0, T ] if for any µ ≥ 0, the solutions of the convolution equations

s(t) + µ(a ? s)(t) = 1 and r(t) + µ(a ? r)(t) = a(t) (4)

satisfy s(t) ≥ 0 and r(t) ≥ 0 on [0, T ].

Kernels with this property have been introduced by Clément and Nohel [2].
We note that the class of completely positive kernels appears naturally in
the theory of viscoelasticity. Several properties and examples of such kernels
appears in [16, Section 4.2].

Definition 3 Suppose S(t), t ≥ 0, is a resolvent for (2). S(t) is called expo-

nentially bounded if there are constants M ≥ 1 and ω ∈ R such that

||S(t)|| ≤ M eωt, for all t ≥ 0.

(M,ω) is called a type of S(t).

Let us note that in contrary to the case of semigroups, not every resolvent
needs to be exponentially bounded even if the kernel function a belongs to
L1(R+). The resolvent version of the Hille–Yosida theorem (see, e.g., [16, The-
orem 1.3]) provides the class of equations that admit exponentially bounded
resolvents. An important class of kernels providing such class of resolvents are
a(t) = tβ−1/Γ(β), α ∈ (0, 2) or the class of completely monotonic functions.
For details, counterexamples and comments we refer to [5].

In this paper the results concerning convergence of resolvents for the equation
(1) in a Banach space B contained in Theorems 4 and 5 play the key role. They
are significant generalizations of the results of Clément and Nohel obtained
in [2] for contraction semigroups.

Theorem 4 Let A be the generator of a C0-semigroup in B and suppose
the kernel function a is completely positive. Then (A, a) admits an exponen-
tially bounded resolvent S(t). Moreover, there exist bounded operators An such
that (An, a) admit resolvent families Sn(t) satisfying ||Sn(t)|| ≤ Mew0t (M ≥
1, w0 ≥ 0) for all t ≥ 0 and

Sn(t)x → S(t)x as n → +∞ (5)

for all x ∈ B, t ≥ 0. Additionally, the convergence is uniform in t on every
compact subset of R+.

Proof The first assertion follows directly from [15, Theorem 5] (see also [16,
Theorem 4.2]). Since A generates a C0-semigroup T (t), t ≥ 0, the resolvent
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set ρ(A) of A contains the ray [w,∞) and

||R(λ,A)k|| ≤ M

(λ− w)k
for λ > w, k ∈ N.

Define

An := nAR(n,A) = n2R(n,A)− nI, n > w (6)

the Yosida approximation of A.

Then

||etAn||= e−nt||en2R(n,A)t|| ≤ e−nt
∞∑

k=0

n2ktk

k!
||R(n,A)k||

≤Me(−n+ n2

n−w
)t = Me

nwt
n−w .

Hence, for n > 2w we obtain

||eAnt|| ≤ Me2wt. (7)

Taking into account the above estimate and the complete positivity of the
kernel function a, we can follow the same steps as in [15, Theorem 5] to
obtain that there exist constants M1 > 0 and w1 ∈ R (independent of n, due
to (7)) such that

||[Hn(λ)](k)|| ≤ M1

(λ− w1)k+1
for λ > w1,

where Hn(λ) := (λ − λâ(λ)An)−1. Here and in the sequel the hat indicates
the Laplace transform. Hence, the generation theorem for resolvent families
implies that for each n > 2ω, the pair (An, a) admits resolvent family Sn(t)
such that

||Sn(t)|| ≤ M1e
w1t. (8)

In particular, the Laplace transform Ŝn(λ) exists and satisfies

Ŝn(λ) = Hn(λ) =

∞∫

0

e−λtSn(t)dt, λ > w1.
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Now recall from semigroup theory that for all µ sufficiently large we have

R(µ,An) =

∞∫

0

e−µt eAnt dt

as well as,

R(µ,A) =

∞∫

0

e−µt T (t) dt .

Since â(λ) → 0 as λ →∞, we deduce that for all λ sufficiently large, we have

Hn(λ) :=
1

λâ(λ)
R(

1

â(λ)
, An) =

1

λâ(λ)

∞∫

0

e(−1/â(λ))teAntdt ,

and

H(λ) :=
1

λâ(λ)
R(

1

â(λ)
, A) =

1

λâ(λ)

∞∫

0

e(−1/â(λ))tT (t)dt .

Hence, from the identity

Hn(λ)−H(λ) =
1

λâ(λ)
[R(

1

â(λ)
, An)−R(

1

â(λ)
, A)]

and the fact that R(µ,An) → R(µ,A) as n → ∞ for all µ sufficiently large
(see, e.g. [14, Lemma 7.3], we obtain that

Hn(λ) → H(λ) as n →∞ . (9)

Finally, due to (8) and (9) we can use the Trotter-Kato theorem for resolvent
families of operators (cf. [13, Theorem 2.1]) and the conclusion follows. ¥

An analogous result like Theorem 4 holds in other cases.

Theorem 5 Let A be the generator of a strongly continuous cosine family.
Suppose any of the following:

(i) a ∈ L1
loc(R+) is completely positive;

(ii) the kernel fuction a is a creep function with a1 log-convex;
(iii) a = c ? c with some completely positive c ∈ L1

loc(R+).

Then (A, a) admits an exponentially bounded resolvent S(t). Moreover, there
exist bounded operators An such that (An, a) admit resolvent families Sn(t)
satisfying ||Sn(t)|| ≤ Mew0t (M ≥ 1, w0 ≥ 0) for all t ≥ 0, n ∈ N, and

Sn(t)x → S(t)x as n → +∞
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for all x ∈ B, t ≥ 0. Additionally, the convergence is uniform in t on every
compact subset of R+.

The proof follows from [16, Theorem 4.3], where the definition of a creep
function can be found, or [15, Theorem 6] and proof of Theorem 4. Therefore
it is omitted.

Remark 6 Other examples of the convergence (5) for the resolvents are given,
e.g., in [2] and [7]. In the first paper, the operator A generates a linear contin-
uous contraction semigroup. In the second of the mentioned papers, A belongs
to some subclass of sectorial operators and the kernel a is an absolutely con-
tinuous function fulfilling some technical assumptions.

Proposition 7 Let A,An and Sn(t) be given as in Theorem 4. Then Sn(t)
commutes with the operator A, for every n sufficiently large and t ≥ 0.

Proof For each n sufficiently large the bounded operators An admit a re-
solvent family Sn(t), so by the complex inversion formula for the Laplace
transform we have

Sn(t) =
1

2πi

∫

Γn

eλtHn(λ)dλ

where Γn is a simple closed rectifiable curve surrounding the spectrum of An

in the positive sense.

On the other hand, Hn(λ) := (λ − λâ(λ)An) where An := nA(n − A)−1, so
each An commutes with A on D(A) and then each Hn(λ) commutes with A,
on D(A), too.

Finally, because A is closed, and all the following integrals are convergent
(exist) we have for all n sufficiently large and x ∈ D(A)

ASn(t)x = A
∫

Γn

eλtHn(λ)xdλ =
∫

Γn

eλtAHn(λ)xdλ

=
∫

Γn

eλtHn(λ)Axdλ = Sn(t)Ax .

¥

7



3 Solutions and the stochastic convolution

Let H and U be two separable Hilbert spaces and Q ∈ L(U) be a linear
bounded symmetric nonnegative operator. A Wiener process W with covari-
ance operator Q is defined on a probability space (Ω,F , (Ft)t≥0, P ). We as-
sume that the process W is a cylindrical one, that is, we do not assume that
TrQ < +∞. In this case, the process W has values in some superspace of
U . Let us note that the results obtained in the paper for cylindrical Wiener
process are valid in classical Wiener process, too. Namely, when TrQ < +∞,
we can take U = H and Ψ = I.

This is apparently well-known that the construction of the stochastic integral
with respect to cylindrical Wiener process requires some particular terms. We
will need the subspace U0 := Q1/2(U) of the space U , which endowed with the
inner product 〈u, v〉U0 := 〈Q−1/2u,Q−1/2v〉U forms a Hilbert space. Among
others, an important role is played by the space of Hilbert-Schmidt operators.
The set L0

2 := L2(U0, H) of all Hilbert-Schmidt operators from U0 into H,
equipped with the norm |C|L2(U0,H) := (

∑+∞
k=1 |Cfk|2H)1/2, where {fk} is an

orthonormal basis of U0, is a separable Hilbert space.

According to the theory of stochastic integral with respect to cylindrical
Wiener process we have to assume that Ψ belongs to the class of measur-
able L0

2-valued processes.

Let us introduce the norms

||Ψ||t :=



E




t∫

0

|Ψ(τ)|2L0
2
dτ








1
2

=



E

t∫

0

[
Tr(Ψ(τ)Q

1
2 )(Ψ(τ)Q

1
2 )∗

]
dτ





1
2

, t ∈ [0, T ].

By N 2(0, T ; L0
2) we denote a Hilbert space of all L0

2-predictable processes Ψ
such that ||Ψ||T < +∞.

It is possible to consider a more general class of integrands, see, e.g. [12],
but in our opinion it is not worthwhile to study the general case. That case
produces a new level of difficulty additionally to problems related to long time
memory of the system. So, we shall study the equation (1) under the below
Probability Assumptions (abbr. (PA)):

(1) X0 is an H-valued, F0-measurable random variable;
(2) Ψ ∈ N 2(0, T ; L0

2) and the interval [0, T ] is fixed.
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Definition 8 Assume that (PA) hold. An H-valued predictable process X(t),
t ∈ [0, T ], is said to be a strong solution to (1), if X has a version such
that P (X(t) ∈ D(A)) = 1 for almost all t ∈ [0, T ]; for any t ∈ [0, T ]

t∫

0

|a(t− τ)AX(τ)|H dτ < +∞, P − a.s. (10)

and for any t ∈ [0, T ] the equation (1) holds P -a.s.

Let A∗ denote the adjoint of A with a dense domain D(A∗) ⊂ H and the
graph norm | · |D(A∗).

Definition 9 Let (PA) hold. An H-valued predictable process X(t), t ∈ [0, T ],
is said to be a weak solution to (1), if P (

∫ t
0 |a(t− τ)X(τ)|Hdτ < +∞) = 1

and if for all ξ ∈ D(A∗) and all t ∈ [0, T ] the following equation holds

〈X(t), ξ〉H = 〈X0, ξ〉H+〈
t∫

0

a(t−τ)X(τ) dτ, A∗ξ〉H+〈
t∫

0

Ψ(τ)dW (τ), ξ〉H , P−a.s.

Remark 10 This definition has sense for a cylindrical Wiener process because
the scalar process 〈∫ t

0 Ψ(τ)dW (τ), ξ〉H , for t ∈ [0, T ], is well-defined.

Definition 11 Assume that X0 is an H-valued F0-measurable random vari-
able. An H-valued predictable process X(t), t ∈ [0, T ], is said to be a mild

solution to the stochastic Volterra equation (1), if

E




t∫

0

|S(t− τ)Ψ(τ)|2L0
2
dτ


 < +∞ for t ≤ T (11)

and, for arbitrary t ∈ [0, T ],

X(t) = S(t)X0 +

t∫

0

S(t− τ)Ψ(τ) dW (τ), P − a.s. (12)

where S(t) is the resolvent for the equation (2), if it exists.

In some cases weak solutions of equation (1) coincides with mild solutions of
(1), see e.g. [11]. In consequence, having results for the convolution on the
right hand side of (12) we obtain results for weak solutions.

In the paper we will use the following well-known result.
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Proposition 12 (see, e.g. [4, Proposition 4.15])
Assume that A is a closed linear unbounded operator with the dense domain
D(A) ⊂ H and Φ(t), t ∈ [0, T ] is an L2(U0, H)-predictable process. If
Φ(t)(U0) ⊂ D(A), P − a.s. for all t ∈ [0, T ] and

P




T∫

0

|Φ(s)|2L0
2
ds < ∞


 = 1, P




T∫

0

|AΦ(s)|2L0
2
ds < ∞


 = 1,

then P




T∫

0

Φ(s) dW (s) ∈ D(A)


 = 1

and A

T∫

0

Φ(s) dW (s) =

T∫

0

AΦ(s) dW (s), P − a.s.

In what follows we assume that (2) admits a resolvent family S(t), t ≥ 0. We
introduce the stochastic convolution

WΨ(t) :=

t∫

0

S(t− τ)Ψ(τ) dW (τ), (13)

where Ψ belongs to the space N 2(0, T ; L0
2). Note that, because resolvent op-

erators S(t), t ≥ 0, are bounded, then S(t− ·)Ψ(·) ∈ N 2(0, T ; L0
2), too.

Let us formulate some auxiliary results concerning the convolution WΨ(t).

Proposition 13 Assume that (2) admits resolvent operators S(t), t ≥ 0.
Then, for arbitrary process Ψ ∈ N 2(0, T ; L0

2), the process WΨ(t), t ≥ 0, given
by (13) has a predictable version.

Proposition 14 Assume that Ψ ∈ N 2(0, T ; L0
2). Then the process WΨ(t), t ≥

0, defined by (13) has square integrable trajectories.

For the proofs of Propositions 13 and 14 we refer to [11].

Proposition 15 Let a ∈ BV (R+) and suppose that (2) admits a resolvent
family S ∈ C1(0,∞; L(H)). Let X be a predictable process with integrable
trajectories. Assume that X has a version such that P (X(t) ∈ D(A)) = 1 for
almost all t ∈ [0, T ] and (11) holds. If for any t ∈ [0, T ] and ξ ∈ D(A∗)

〈X(t), ξ〉H = 〈X0, ξ〉H +

t∫

0

〈a(t− τ)X(τ), A∗ξ〉Hdτ (14)
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+

t∫

0

〈ξ, Ψ(τ)dW (τ)〉H , P − a.s.,

then

X(t) = S(t)X0 +

t∫

0

S(t− τ)Ψ(τ)dW (τ), t ∈ [0, T ]. (15)

Remark 16 If (1) is parabolic and the kernel a is 3-monotone, understood
in the sense defined by Prüss [16, Section 3], then S ∈ C1(0,∞; L(H)) and
a ∈ BV (R+) respectively.

Proposition 17 Assume that A is a closed linear unbounded operator with
the dense domain D(A), a ∈ L1

loc(R+) and S(t), t ≥ 0, are resolvent operators
for the equation (2). If Ψ ∈ N 2(0, T ; L0

2), then the stochastic convolution WΨ

fulfills the equation (14) with X0 ≡ 0.

For the proofs of Proposition 15 and 17 we refer to [11].

Remark 18 Assume that X0 ∈ D(A) a.s. and, in addition, X0 ∈ Ker(A).
Define Y Ψ(t) = WΨ(t) + X0 then Y Ψ(t) satisfies the equation (1). In fact, for
any t ∈ [0, T ] and ξ ∈ D(A∗) we have

〈Y Ψ(t), ξ〉H = 〈WΨ(t), ξ〉H + 〈X0, ξ〉H =

t∫

0

〈a(t− τ)WΨ(τ), A∗ξ〉Hdτ + 〈X0, ξ〉H

=

t∫

0

〈a(t− τ)(Y Ψ(τ)−X0), A
∗ξ〉Hdτ + 〈X0, ξ〉H

=

t∫

0

〈a(t− τ)Y Ψ(τ), A∗ξ〉Hdτ −
t∫

0

a(τ)〈X0, A
∗ξ〉Hdτ + 〈X0, ξ〉H

=

t∫

0

〈a(t− τ)Y Ψ(τ), A∗ξ〉Hdτ + 〈X0, ξ〉H .

In consequence, in what follows we restrict ourselves to the case X0 ≡ 0.

Corollary 19 Assume that A is a linear bounded operator in H, a ∈ L1
loc(R+)

and S(t), t ≥ 0, are resolvent operators for the equation (2). If Ψ belongs to
N 2(0, T ; L0

2) then

WΨ(t) =

t∫

0

a(t− τ)AWΨ(τ)dτ +

t∫

0

Ψ(τ)dW (τ) . (16)

Remark 20 The formula (16) says that the convolution WΨ is a strong so-
lution to (1) with X0 ≡ 0 if the operator A is bounded.
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4 Strong solution

In this section we provide sufficient conditions under which the stochastic
convolution WΨ(t), t ≥ 0, defined by (13) is a strong solution to the equation
(1).

Theorem 21 Suppose that assumptions of Theorem 4 or Theorem 5 hold.
Then the equation (1) has a strong solution. Precisely, the convolution WΨ

defined by (13) is the strong solution to (1) with X0 ≡ 0.

The proof of Theorem 21 bases on the following result.

Lemma 22 Let A be a closed linear unbounded operator with the dense do-
main D(A) equipped with the graph norm | · |D(A). Suppose that assumptions
of Theorem 4 or Theorem 5 hold. If Ψ and AΨ belong to N 2(0, T ; L0

2) and in
addition Ψ(·, ·)(U0) ⊂ D(A), P-a.s., then (16) holds.

Proof Because formula (16) holds for any bounded operator, then it holds
for the Yosida approximation An of the operator A, too, that is

WΨ
n (t) =

t∫

0

a(t− τ)AnW
Ψ
n (τ)dτ +

t∫

0

Ψ(τ)dW (τ),

where

WΨ
n (t) :=

t∫

0

Sn(t− τ)Ψ(τ)dW (τ)

and

AnW
Ψ
n (t) = An

t∫

0

Sn(t− τ)Ψ(τ)dW (τ).

Recall that by assumption Ψ ∈ N 2(0, T ; L0
2). Because the operators Sn(t)

are deterministic and bounded for any t ∈ [0, T ], n ∈ N, then the operators
Sn(t− ·)Ψ(·) belong to N 2(0, T ; L0

2), too. In consequence, the difference

Φn(t− ·) := Sn(t− ·)Ψ(·)− S(t− ·)Ψ(·) (17)

belongs to N 2(0, T ; L0
2) for any t ∈ [0, T ] and n ∈ N. This means that

E




t∫

0

|Φn(t− τ)|2L0
2
dτ


 < +∞ (18)

for any t ∈ [0, T ].
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Let us recall that the cylindrical Wiener process W (t), t ≥ 0, can be written
in the form

W (t) =
+∞∑

j=1

fj βj(t), (19)

where {fj} is an orthonormal basis of U0 and βj(t) are independent real Wiener
processes. From (19) we have

t∫

0

Φn(t− τ) dW (τ) =
+∞∑

j=1

t∫

0

Φn(t− τ) fj dβj(τ). (20)

Then, from (18)

E




t∫

0




+∞∑

j=1

|Φn(t− τ) fj|2H

 dτ


 < +∞ (21)

for any t ∈ [0, T ]. Next, from (20), properties of stochastic integral and (21)
we obtain for any t ∈ [0, T ],

E

∣∣∣∣∣∣

t∫

0

Φn(t− τ) dW (τ)

∣∣∣∣∣∣

2

H

=E

∣∣∣∣∣∣

+∞∑

j=1

t∫

0

Φn(t− τ) fj dβj(τ)

∣∣∣∣∣∣

2

H

≤

E




+∞∑

j=1

t∫

0

|Φn(t− τ) fj|2Hdτ


≤E




+∞∑

j=1

T∫

0

|Φn(T − τ) fj|2Hdτ


 < +∞.

By Theorem 4 or 5, the convergence (5) of resolvent families is uniform in t
on every compact subset of R+, particularly on the interval [0, T ]. Now, we
use (5) in the Hilbert space H, so (5) holds for every x ∈ H. Then, for any
fixed j,

T∫

0

|[Sn(T − τ)− S(T − τ)] Ψ(τ) fj|2Hdτ (22)

tends to zero for n → +∞. Summing up our considerations, particularly using
(21) and (22) we can write

sup
t∈[0,T ]

E

∣∣∣∣∣∣

t∫

0

Φn(t− τ)dW (τ)

∣∣∣∣∣∣

2

H

≡ sup
t∈[0,T ]

E

∣∣∣∣∣∣

t∫

0

[Sn(t− τ)− S(t− τ)]Ψ(τ)dW (τ)

∣∣∣∣∣∣

2

H

≤

13



≤ E



+∞∑

j=1

T∫

0

|[Sn(T − τ)− S(T − τ)]Ψ(τ) fj|2Hdτ


→ 0

as n → +∞.

Hence, by the Lebesgue dominated convergence theorem

lim
n→+∞ sup

t∈[0,T ]
E

∣∣∣WΨ
n (t)−WΨ(t)

∣∣∣
2

H
= 0. (23)

By assumption, Ψ(·, ·)(U0) ⊂ D(A), P − a.s. Because S(t)(D(A)) ⊂ D(A),
then S(t− τ)Ψ(τ)(U0) ⊂ D(A), P − a.s., for any τ ∈ [0, t], t ≥ 0. Hence, by
Proposition 12, P (WΨ(t) ∈ D(A)) = 1.

For any n ∈ N, t ≥ 0, we have

|AnW
Ψ
n (t)− AWΨ(t)|H ≤ Nn,1(t) + Nn,2(t),

where

Nn,1(t) := |AnWΨ
n (t)− AnWΨ(t)|H ,

Nn,2(t) := |AnWΨ(t)− AWΨ(t)|H = |(An − A)WΨ(t)|H .

Then

|AnW
Ψ
n (t)− AWΨ(t)|2H ≤N2

n,1(t) + 2Nn,1(t)Nn,2(t) + N2
n,2(t)

< 3[N2
n,1(t) + N2

n,2(t)]. (24)

Let us study the term Nn,1(t). Note that the unbounded operator A gener-
ates a semigroup. Then we have for the Yosida approximation the following
properties:

Anx = JnAx for any x ∈ D(A), sup
n
||Jn|| < ∞ (25)

where Anx = nAR(n,A)x = AJnx for any x ∈ H, with Jn := nR(n,A).
Moreover (see [6, Chapter II, Lemma 3.4]):

lim
n→∞ Jnx = x for any x ∈ H,

lim
n→∞Anx = Ax for any x ∈ D(A). (26)

By Proposition 7, ASn(t)x = Sn(t)Ax for all x ∈ D(A). So, by Propositions 7
and 12 and the closedness of A we can write

14



AnW
Ψ
n (t)≡An

t∫

0

Sn(t− τ)Ψ(τ)dW (τ)

= Jn

t∫

0

ASn(t− τ)Ψ(τ)dW (τ) = Jn




t∫

0

Sn(t− τ)AΨ(τ)dW (τ)


 .

Analogously,

AnW
Ψ(t) = Jn




t∫

0

S(t− τ)AΨ(τ)dW (τ)


 .

By (25) we have

Nn,1(t) = |Jn

t∫

0

[Sn(t− τ)− S(t− τ)]AΨ(τ)dW (τ)|H

≤ |
t∫

0

[Sn(t− τ)− S(t− τ)]AΨ(τ)dW (τ)|H .

From assumptions, AΨ ∈ N 2(0, T ; L0
2). Then the term [Sn(t − τ) − S(t −

τ)]AΨ(τ) may be treated like the difference Φn defined by (17).

Hence, from (25) and (23), for the first term of the right hand side of (24) we
have

lim
n→+∞ sup

t∈[0,T ]
E(N2

n,1(t)) = 0.

For the second term of (24), that is N2
n,2(t), we can follow the same steps as

above for proving (23).

Nn,2(t) = |AnW
Ψ(t)− AWΨ(t)|H

≡
∣∣∣∣∣∣
An

t∫

0

S(t− τ)Ψ(τ)dW (τ)− A

t∫

0

S(t− τ)Ψ(τ)dW (τ)

∣∣∣∣∣∣
H

=

=

∣∣∣∣∣∣

t∫

0

[An − A]S(t− τ)Ψ(τ)dW (τ)

∣∣∣∣∣∣
H

.

From assumptions, Ψ, AΨ ∈ N 2(0, T ; L0
2). Because An, S(t), t ≥ 0 are bounded,

then AnS(t− ·)Ψ(·) ∈ N 2(0, T ; L0
2), too. Analogously, AS(t− ·)Ψ(·) = S(t−

·)AΨ(·) ∈ N 2(0, T ; L0
2).

Let us note that the set of all Hilbert-Schmidt operators acting from one
separable Hilbert space into another one, equipped with the operator norm
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defined on page 8 is a separable Hilbert space. Particularly, sum of two Hilbert-
Schmidt operators is a Hilbert-Schmidt operator, see e.g. [1]. Therefore, we
can deduce that the operator (An − A) S(t − ·)Ψ(·) ∈ N 2(0, T ; L0

2), for any
t ∈ [0, T ]. Hence, the term [An − A]S(t − τ)Ψ(τ) may be treated like the
difference Φn defined by (17). So, we obtain

E
(
N2

n,2(t)
)

=E




t∫

0




+∞∑

j=1

|[An − A]S(t− τ)Ψ(τ) fj|2H

 dτ




≤E



+∞∑

j=1

T∫

0

|[An − A]S(t− τ)Ψ(τ) fj|2H dτ


 < +∞,

for any t ∈ [0, T ].

By the convergence (26), for any fixed j,

T∫

0

|[An − A]S(t− τ)Ψ(τ) fj|2Hdτ

tends to zero for n → +∞.

Summing up our considerations, we have

lim
n→+∞ sup

t∈[0,T ]
E(N2

n,2(t)) = 0 .

So, we can deduce that

lim
n→+∞ sup

t∈[0,T ]
E|AnWΨ

n (t)− AWΨ(t)|2H = 0,

and then (16) holds. ¥

Proof of Theorem 21 In order to prove Theorem 21, we have to show only
the condition (10). Let us note that the convolution WΨ(t) has integrable tra-
jectories. Because the closed unbounded linear operator A becomes bounded
on (D(A), |·|D(A)), see [17, Chapter 5], we obtain that AWΨ(·) ∈ L1([0, T ]; H),
P-a.s. Hence, properties of convolution provide integrability of the function
a(T − τ)AWΨ(τ) with respect to τ , what finishes the proof. ¥
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