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Abstract. We study the solvability of the fractional order inhomogeneous Cauchy problem

Dαt u(t) = Au(t) + f(t), t > 0, 1 < α ≤ 2,

where A is a closed linear operator in some Banach space X and f : [0,∞) → X a given function.

Operators families associated with this problem are defined and their regularity properties are investi-
gated. In the case where A is a generator of a β-times integrated cosine family (Cβ(t)), we derive explicit

representations of mild and classical solutions of the above problem in terms of the integrated cosine

family. We include applications to elliptic operators with Dirichlet, Neumann or Robin type boundary
conditions on Lp-spaces and on the space of continuous functions.

1. Introduction

The classical wave equation provides the most important model for the study of oscillatory phenomena
in physical sciences and engineering. In the treatment of the evolutionary equation

(1.1)
∂2u(t, x)

∂t2
= ∆u(t, x) + f(t, x), t > 0, x ∈ Ω,

in function spaces over Ω, where Ω ⊂ RN is an open set, one needs initial conditions, u(0, x) =

u0(x);
∂u(0, x)

∂t
= u1(x), x ∈ Ω; and boundary conditions. Traditionally, Dirichlet and Neumann bound-

ary conditions are the most studied. The Robin type boundary conditions, ∇u · ν + γu = g in ∂Ω (where
ν denotes the outer unit normal vector at the boundary of the open set Ω), have proven important due to
the fact that they arise naturally in heat conduction problems as well as in physical Geodesy. Moreover,
from the Robin boundary conditions, one can recover the Dirichlet and Neumann boundary conditions
(see e.g. [6, 7]). For more details and applications we refer to [6, 7, 14, 25, 43, 48, 49] and the references
therein.

For many concrete problems it has been observed that equations of fractional order in time provide a
more suitable framework for their study. Typical of this are phenomena with memory effects, anomalous
diffusion, problems in rheology, material science and several other areas. We refer to the monographs
[39, 44, 45] and papers [11, 12, 16, 21, 22, 23, 38, 41, 52] for more information.

We will investigate the linear inhomogeneous differential equation of fractional order:

(1.2) Dαt u(t) = Au(t) + f(t), t > 0, 1 < α ≤ 2,

in which Dαt is the Caputo fractional derivative. Here X is a complex Banach space and A is a closed
linear operator in X. The use of the Caputo fractional derivative has the advantage (over, say, the
Riemann-Liouville fractional derivative) that the initial conditions are formulated in terms of the values
of the solution u and its derivative at 0. These have physically significant interpretations in concrete
problems.

Our aim is to construct a basic theory for the solutions of this equation along with applications to some
partial differential equations modeling phenomena from science and engineering. To study the existence,

2010 Mathematics Subject Classification. Primary: 47D06. Secondary: 35K20, 35L20, 45N05.
Key words and phrases. Fractional derivative; subordination principle; integrated cosine family; elliptic operators;

Dirichlet, Neumann and Robin boundary conditions.

C. Lizama is partially supported by CONICYT - PIA - Anillo ACT1416 and FONDECYT grant 1140258.
1



2 VALENTIN KEYANTUO, CARLOS LIZAMA, AND MAHAMADI WARMA

uniqueness and regularity of the solutions of Problem (1.2), in general, one needs an operator family
associated with the problem [33, 34]. For example, the theory of cosine families has been developed
to deal with the case α = 2. In case A does not generate a cosine family (if α = 2), the concept of
exponentially bounded β-times integrated cosine families has been used in the treatment of Problem
(1.2). In [8], an operator family called Sα has been introduced to deal with the fractional case, that is,
1 < α ≤ 2 and β = 0. Unfortunately, this theory does not include the case of exponentially bounded
β-times integrated cosine families. Consequently, the results obtained in [8] cannot be applied to deal
with the following problem in Lp(Ω), p 6= 2, which is the fractional version of (1.1):

(1.3)


Dαt u(t, x)−Au(t, x) = f(t, x), t > 0, x ∈ Ω, 1 < α ≤ 2,
∂u(t, z)

∂νA
+ γ(z)u(t, z) = 0, t > 0, z ∈ ∂Ω,

u(0, x) = u0(x),
∂u(0, x)

∂t
= u1(x), x ∈ Ω.

Here, Ω ⊂ RN (N ≥ 2) is an open set with boundary ∂Ω, A is a uniformly elliptic operator with bounded
measurable coefficients formally given by

(1.4) Au =
N∑
j=1

Dj

(
N∑
i=1

ai,jDiu+ bju

)
−

(
N∑
i=1

ciDiu+ du

)
and

∂u

∂νA
=

N∑
j=1

(
N∑
i=1

aijDiu+ bju

)
· νj ,

where ν denotes the unit outer normal vector of Ω at ∂Ω and γ is a nonnegative measurable function in
L∞(∂Ω) or γ =∞.

In this paper, we introduce an appropriate operator family in a general Banach space associated with
Problem (1.2) that will cover all the above mentioned cases. This family will be called an (α, 1)β-resolvent
family (Sβα(t)) (see Definition 4.2 below) where 1 < α ≤ 2 and β ≥ 0 is a real parameter associated with
the operator A. The case β = 0 and α = 2 corresponds to the wave equation with A generating a cosine
family. The family S0

α (1 < α ≤ 2) corresponds to the family Sα introduced in the reference [8] and
mentioned above. The family Sβα, β > 0 and α = 2, corresponds to the theory of exponentially bounded
β-times integrated cosine family. We use this framework to treat the homogeneous (f = 0 in (1.2)) as
well as the inhomogeneous problems (under suitable conditions on the function f in (1.2)). We shall
in fact consider the case where the operator A is an Lp-realization of a more general uniformly elliptic
operator in divergence form (as the one in (1.4)) with various boundary conditions (Dirichlet, Neumann
or Robin). We obtain a representation of mild and classical solutions in terms of the operator family Sβα.
Our results apply to the situation where the closed linear operator A satisfies the following condition:
There exist ω ≥ 0 and γ ≥ −1 such that

(1.5) ‖(λ2 −A)−1‖ ≤M |λ|γ , Re(λ) > ω.

In fact, several operators of interest such as the Laplace operator in Lp(RN ) for N ≥ 2 and p 6= 2, which
do not generate cosine families are generators of integrated cosine families. See e.g. [3, Chapter 8] or
[17, 24]. For the case of Lp(Ω), see e.g. [30, 42]. We refer to the book of Brezis [9, Section 10.3 and
p.346] for some comments about the Lp-theory of the wave equation.

The paper is organized as follows. In Section 2, we present some preliminaries on fractional derivatives,
the Wright type functions and the Mittag-Leffler functions. In Section 3 we use the Laplace transform to
motivate the introduction of the operator family which will be used in the sequel. Section 4 is devoted to
the definition and several properties of the resolvent family Sβα. In the short Section 5 we characterize the
resolvent family Sβα through the regularized fractional Cauchy problem. The homogeneous (fractional)
abstract Cauchy problem is solved in Section 6 . The conditions on the initial data that ensure solvability
of the problem agree with the classical cases α = 2. We take up the inhomogeneous (fractional) abstract
Cauchy problem in Section 7. We are able to deal satisfactory with this problem under natural conditions
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on the initial data and the inhomogeneity. The results obtained in the case α = 2 corresponding to
integrated cosine families seem to be new. In fact, we are able to deal with the full range 1 < α ≤ 2. In
the final Section 8 we present various examples of problems that can be handled with the results obtained.

2. Preliminaries

The algebra of bounded linear operators on a Banach space X will be denoted by L(X), the resolvent

set of a linear operator A by ρ(A). We denote by gα the function gα(t) := tα−1

Γ(α) , t > 0, α > 0, where Γ is

the usual gamma function. It will be convenient to write g0 := δ0, the Dirac measure concentrated at 0.
Note the semigroup property:

gα+β = gα ∗ gβ , α, β ≥ 0.

The Riemann-Liouville fractional integral of order α > 0, of a locally integrable function u : [0,∞)→
X is given by:

Iαt u(t) := (gα ∗ u)(t) :=

∫ t

0

gα(t− s)u(s)ds.

The Caputo fractional derivative of order α > 0 of a function u is defined by

Dαt u(t) := Im−αt u(m)(t) =

∫ t

0

gm−α(t− s)u(m)(s)ds

where m := dαe is the smallest integer greatest than or equal to α, u(m) is the mth-order distributional
derivative of u(·), under appropriate assumptions. Then, when α = n is a natural number, we get

Dnt := dn

dtn . In relation to the Riemann-Liouville fractional derivative of order α, namely Dα
t , we have:

(2.1) Dαt f(t) = Dα
t

(
f(t)−

m−1∑
k=0

f (k)(0)gk+1(t)

)
, t > 0,

where m := dαe has been defined above, and for a locally integrable function u : [0,∞)→ X,

Dα
t u(t) :=

dm

dtm

∫ t

0

gm−α(t− s)u(s) ds, t > 0.

The Laplace transform of a locally integrable function f : [0,∞)→ X is defined by

L(f)(λ) := f̂(λ) :=

∫ ∞
0

e−λtf(t)dt = lim
R→∞

∫ R

0

e−λtf(t) dt,

provided the integral converges for some λ ∈ C. If for example f is exponentially bounded, that is, there
exist M ≥ 0 and ω ≥ 0 such that ‖f(t)‖ ≤ Meωt, t ≥ 0, then the integral converges absolutely for
Re(λ) > ω and defines an analytic function there. The most general existence theorem for the Laplace
transform in the vector-valued setting is given by [3, Theorem 1.4.3].

Regarding the fractional derivative, we have for α > 0 and m := dαe, the following important proper-
ties:

(2.2) D̂αt f(λ) = λαf̂(λ)−
m−1∑
k=0

λα−k−1f (k)(0),

and

D̂α
t f(λ) = λαf̂(λ)−

m−1∑
k=0

(gm−α ∗ f)(k)(0)λm−1−k.

The power function λα is uniquely defined as λα = |λ|αeiarg(λ), with −π < arg(λ) < π.
Next, we recall some useful properties of convolutions that will be frequently used throughout the

paper. For every f ∈ C([0,∞);X), k ∈ N, α ≥ 0 we have that for every t ≥ 0,

dk

dtk
[(gk+α ∗ f)(t)] = (gα ∗ f)(t).(2.3)
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Let f ∈ C1([0,∞);X). Then for every α > 0 and t ≥ 0,

d

dt
[(gα ∗ f)(t)] = gα(t)f(0) + (gα ∗ f ′)(t).(2.4)

Let k ∈ N. If u ∈ Ck−1([0,∞);X) and v ∈ Ck([0,∞);X), then for every t ≥ 0,

dk

dtk
[(u ∗ v)(t)] =

k−1∑
j=0

u(k−1−j)(t)v(j)(0) + (u ∗ v(k))(t)

=

k−1∑
j=0

dk−1

dtk−1

[
(gj ∗ u)(t)v(j)(0)

]
+ (u ∗ v(k))(t).(2.5)

The Mittag-Leffler function (see e.g. [22, 23, 44, 46]) is defined as follows:

Eα,β(z) :=

∞∑
n=0

zn

Γ(αn+ β)
=

1

2πi

∫
Ha

eµ
µα−β

µα − z
dµ, α > 0, β ∈ C, z ∈ C,(2.6)

where Ha is a Hankel path, i.e. a contour which starts and ends at −∞ and encircles the disc |µ| ≤ |z| 1α
counterclockwise. The Laplace transform of the Mittag-Leffler function is given by ([44]):∫ ∞

0

e−λttαk+β−1E
(k)
α,β(±ωtα)dt =

k!λα−β

(λα ∓ ω)k+1
, Re(λ) > |ω|1/α.

Using this formula, we obtain for 0 < α ≤ 2:

(2.7) Dαt Eα,1(ztα) = zEα,1(ztα), t > 0, z ∈ C,

that is, for every z ∈ C, the function u(t) := Eα,1(ztα) is a solution of the scalar valued problem

Dαt u(t) = zu(t), t > 0, 1 < α ≤ 2.

In addition, one has the identity

d

dt
Eα,1(ztα) = ztα−1Eα,α(ztα).

To see this, it is sufficient to write

L
(
tα−1Eα,α(ztα)

)
(λ) =

1

λα − z
=

1

z

[
λ
λα−1

λα − z
− 1

]
,

and invert the Laplace transform. Letting v(t) := Eα,1(ztα)x, t > 0, x ∈ X, we have that

v(t) = g1(t)x+ z(gα ∗ v)(t).(2.8)

By [44, Formula (1.135)] (or [8, Formula (2.9)]), if ω ≥ 0 is a real number, then there exist some constants
C1, C2 ≥ 0 such that

Eα,1(ωtα) ≤ C1e
tω

1
α and Eα,α(ωtα) ≤ C2e

tω
1
α , t ≥ 0, α ∈ (0, 2).(2.9)

and the estimates in (2.9) are sharp. Recall the definition of the Wright type function [23, Formula (28)]
(see also [44, 46, 50]):

(2.10) Φα(z) :=

∞∑
n=0

(−z)n

n!Γ(−αn+ 1− α)
=

1

2πi

∫
γ

µα−1eµ−zµ
α

dµ, 0 < α < 1,

where γ is a contour which starts and ends at −∞ and encircles the origin once counterclockwise. This
has sometimes also been called the Mainardi function. By [8, p.14] or [23], Φα(t) is a probability density
function, that is,

Φα(t) ≥ 0, t > 0;

∫ ∞
0

Φα(t)dt = 1,
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and its Laplace transform is the Mittag-Leffler function in the whole complex plane. We also have that
Φα(0) = 1

Γ(1−α) . Concerning the Laplace transform of the Wright type functions, the following identities

hold:

(2.11) e−λ
αs = L

(
α

s

tα+1
Φα(st−α)

)
(λ), 0 < α < 1,

and

(2.12) λα−1e−λ
αs = L

(
1

tα
Φα(st−α)

)
(λ), 0 < α < 1.

See [23, Formulas (40) and (42)] and [8, Formula (3.10)]. We notice that the Laplace transform formula
(2.11) was formerly first given by Pollard and Mikusinski (see [23] and references therein).

The following formula on the moments of the Wright function will be useful:

(2.13)

∫ ∞
0

xpΦα(x)dx =
Γ(p+ 1)

Γ(αp+ 1)
, p > 0, 0 < α < 1.

The preceding formula (2.13) is derived from the representation (2.10) and can be found in [23]. For more
details on the Wright type functions, we refer to the papers [8, 23, 38, 50] and the references therein. We
note that the Wright functions have been used by Bochner to construct fractional powers of semigroup
generators (see e.g. [51, Chapter IX]).

3. Motivations

In this section we discuss heuristically the solvability of the fractional order Cauchy problem (1.2).
We proceed through the use of the Laplace transform and derive some representation formulas that will
serve as motivation for the theoretical framework of the subsequent sections.

Let 1 < α ≤ 2 and suppose u satisfies (1.2) and that there exist some constants M,ω ≥ 0 such that
‖(g1 ∗ u)(t)‖ ≤Meωt, t > 0. We rewrite the fractional differential equation in integral form as:

u(t) = A(gα ∗ u)(t) + (gα ∗ f)(t) + u(0) + tu′(0), t > 0.(3.1)

Suppose also that (g1 ∗ f)(t) is exponentially bounded. Taking the Laplace transform in both sides of
(3.1) and assuming that {λα : Re(λ) > ω} ⊂ ρ(A) we have:

û(λ) = λα−1(λα −A)−1u(0) + λα−2(λα −A)−1u′(0) + (λα −A)−1f̂(λ), Re(λ) > ω.(3.2)

Now we assume that A is the generator of an exponentially bounded β-times integrated cosine family
(Cβ(t)) on X for some β ≥ 0, and denote by (Sβ(t)) the associated (β+ 1)-times integrated cosine family

(or β-times integrated sine family), namely, Sβ(t)x =
∫ t

0
Cβ(s)xds, t ≥ 0. Then by definition there exist

some constants ω,M ≥ 0 such that ‖Cβ(t)x‖ ≤ Meωt‖x‖, x ∈ X, t > 0, {λ2 ∈ C : Re(λ) > ω} ⊂ ρ(A)
and

λ(λ2 −A)−1x = λβ
∫ ∞

0

e−λtCβ(t)xdt = λβ+1

∫ ∞
0

e−λtSβ(t)xdt, Re(λ) > ω, x ∈ X.
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Replacing the above expression into (3.2) we arrive at:

û(λ) =λα−1λ
αβ
2 −

α
2

∫ ∞
0

e−λ
α
2 tCβ(t)u(0) dt+ λα−2λ

αβ
2 −

α
2

∫ ∞
0

e−λ
α
2 tCβ(t)u′(0)dt

+ λ
αβ
2 −

α
2

∫ ∞
0

e−λ
α
2 tCβ(t)f̂(λ)dt

=λ
α
2−1λ

αβ
2

∫ ∞
0

e−λs
∫ ∞

0

αt

2s
α
2 +1

Φα
2

(ts−
α
2 )Cβ(t)u(0) dsdt

+ λ
α
2−2λ

αβ
2

∫ ∞
0

e−λs
∫ ∞

0

αt

2s
α
2 +1

e−λsΦα
2

(ts−
α
2 )Cβ(t)u′(0) dsdt

+ λ
αβ
2 −

α
2

∫ ∞
0

e−λs
∫ ∞

0

αt

2s
α
2 +1

e−λsΦα
2

(st−
α
2 )Cβ(t)dsf̂(λ)dt

=λ
α
2−1λ

αβ
2

∫ ∞
0

e−λs
∫ ∞

0

αt

2s
α
2 +1

Φα
2

(ts−
α
2 )Cβ(t)u(0)dtds

+ λ
α
2−2λ

αβ
2

∫ ∞
0

e−λs
∫ ∞

0

αt

2s
α
2 +1

e−λsΦα
2

(ts−
α
2 )Cβ(t)u′(0)dtds

+ λ
αβ
2 −

α
2

∫ ∞
0

e−λs
∫ ∞

0

αt

2s
α
2 +1

e−λsΦα
2

(st−
α
2 )Cβ(t)f̂(λ)dtds,(3.3)

where we have used the Laplace transform formula (2.11) and Fubini’s theorem. Letting

Rβα(t)x :=

∫ ∞
0

αs

2t
α
2 +1

Φα
2

(ts−
α
2 )Cβ(s)xds, t > 0,

it follows from (3.3) that

û(λ) = λ
αβ
2

̂
(g1−α2 ∗R

β
α)(λ)u(0) + λ

αβ
2

̂
(g2−α2 ∗R

β
α)u′(0) + λ

αβ
2

̂
(gα

2
∗Rβα ∗ f)(λ).(3.4)

If we use instead the associated ”sine” function (Sβ(t)), we obtain the following representation

û(λ) =λ
αβ
2 λα−1

∫ ∞
0

e−λs
∫ ∞

0

αt

2s
α
2 +1

Φα
2

(ts−
α
2 )Sβ(t)u(0)dtds

+ λ
αβ
2 λα−2

∫ ∞
0

e−λs
∫ ∞

0

αt

2s
α
2 +1

Φα
2

(ts−
α
2 )Sβ(t)u′(0)dtds

+ λ
αβ
2

∫ ∞
0

e−λs
∫ ∞

0

αt

2s
α
2 +1

Φα
2

(ts−
α
2 )Sβ(t)f̂(λ) dt ds.(3.5)

From this and using the uniqueness theorem for the Laplace transform, we have the following:

(gα
2
∗Rβα)(t)x =

∫ ∞
0

αs

2t
α
2 +1

Φα
2

(st−
α
2 )Sβ(s)xds, t > 0,

and

(g1−α2 ∗R
β
α)(t)x = Dα−1

t (gα
2
∗Rβα)(t)x, t > 0,

and

(g2−α2 ∗R
β
α)(t)x = (g2−α ∗ gα2 ∗R

β
α)(t)x, t > 0.

In the next section we will take inspiration from the above heuristics to define and study the regularity
properties of resolvent families associated with Problem (1.2). We will also deal with the case when there
is an underlying exponentially bounded integrated cosine family.

4. Resolvent families and their properties

The following two definitions are motivated by the discussion in Section 3.
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Definition 4.1. Let A be a closed linear operator with domain D(A) defined on a Banach space X and
let 1 < α ≤ 2, β ≥ 0. We say that A is the generator of an (α, α)β-resolvent family if there exists a
strongly continuous function Pβα : [0,∞) → L(X) such that ‖(g1 ∗ Pβα)(t)x‖ ≤ Meωt‖x||, x ∈ X, t ≥ 0,
for some constants M,ω ≥ 0, {λα : Re(λ) > ω} ⊂ ρ(A), and

(λα −A)−1x = λ
αβ
2

∫ ∞
0

e−λtPβα(t)xdt, Re(λ) > ω, x ∈ X.

In this case, Pβα is called the (α, α)β-resolvent family generated by A.

Definition 4.2. Let A be a closed linear operator with domain D(A) defined on a Banach space X and
let 1 < α ≤ 2, β ≥ 0. We call A the generator of an (α, 1)β-resolvent family if there exists a strongly
continuous function Sβα : [0,∞) → L(X) such that ‖(g1 ∗ Sβα)(t)x‖ ≤ Meωt‖x||, x ∈ X, t ≥ 0, for some
M,ω ≥ 0, {λα : Re(λ) > ω} ⊂ ρ(A), and

λα−1(λα −A)−1x = λ
αβ
2

∫ ∞
0

e−λtSβα(t)xdt, Re(λ) > ω, x ∈ X.

In this case, Sβα is called the (α, 1)β-resolvent family generated by A.

We will say that Pβα (resp. Sβα) is exponentially bounded if there exist some constants M,ω ≥ 0 such
that ‖Pβα(t)‖ ≤Meωt, ∀ t ≥ 0, (resp. ‖Sβα(t)‖ ≤Meωt, ∀ t ≥ 0).

It follows from the uniqueness theorem for the Laplace transform that an operator A can generate at
most one (α, 1)β (resp. (α, α)β)-resolvent family for given parameters 1 < α ≤ 2 and β ≥ 0.

We shall write (α, 1) and (α, α) for (α, 1)0 and (α, α)0 respectively. Before we give some properties of
the above resolvent families, we need the following preliminary result.

Lemma 4.3. Let f : [0,∞) → X be such that there exist some constants M ≥ 0 and ω ≥ 0 such that
‖(g1 ∗ f)(t)‖ ≤ Meωt, t > 0. Then for every α ≥ 1, there exist some constants M1 ≥ 0 and ω1 ≥ 0 such
that ‖(gα ∗ f)(t)‖ ≤M1e

ω1t, t > 0.

Proof. Assume that f satisfies the hypothesis of the lemma and let α ≥ 1. We just have to consider the
case α > 1. Then for every t ≥ 0,

‖(gα ∗ f)(t)‖ =‖(gα−1 ∗ g1 ∗ f)(t)‖ ≤
∫ t

0

gα−1(s)Meω(t−s) ds = Meωt
∫ t

0

sα−2

Γ(α− 1)
e−ωs ds

≤Meωt
tα−1

Γ(α)
≤M1e

ω1t,

for some constants M1, ω1 ≥ 0, and the proof is finished. �

Remark 4.4. Let A be a closed linear operator with domain D(A) defined on a Banach space X and
let 1 < α ≤ 2, β ≥ 0.

(a) Using Lemma 4.3 (this is used to show the exponential boundedness) we have the following result.
If A generates an (α, 1)β-resolvent family Sβα, then it generates an (α, α)β-resolvent family Pβα given
by

(4.1) Pβα(t)x = (gα−1 ∗ Sβα)(t)x, t ≥ 0, x ∈ X.

(b) By the uniqueness theorem for the Laplace transform, a (2, 2)-resolvent family corresponds to the
concept of sine family, while a (2, 1)-resolvent family corresponds to a cosine family. Furthermore,
a (2, 1)β-resolvent family corresponds to the concept of exponentially bounded β-times integrated
cosine family. Likewise, a (2, 2)β-resolvent family represents an exponentially bounded β-times
integrated sine family. We refer to the monographs [3, 20] and the corresponding references for
a study of the concepts of cosine and sine families and to [4] for an overview on the theory of
integrated cosine and sine families. A systematic study in the fractional case is carried out in [8]
for the case β = 0.
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Some properties of (Pβα(t)) and (Sβα(t)) are included in the following lemmas. Their proof uses tech-
niques from the general theory of (a, k)-regularized resolvent families [35] (see also [2, 8]). It will be of
crucial use in the investigation of solutions of fractional order Cauchy problems in Sections 5, 6 and 7.
The proof of the analogous results in the case of cosine families may be found in [3]. The corresponding
result for the case 0 < α ≤ 1 is included in [8, 28] for β = 0 and in [29] for β ≥ 0. For the sake of
completeness we include the full proof.

Lemma 4.5. Let A be a closed linear operator with domain D(A) defined on a Banach space X. Let
1 < α ≤ 2, β ≥ 0 and assume that A generates an (α, 1)β-resolvent family Sβα. Then the following
properties hold:

(a) Sβα(t)D(A) ⊂ D(A) and ASβα(t)x = Sβα(t)Ax for all x ∈ D(A), t ≥ 0.

(b) For all x ∈ D(A), Sβα(t)x = gαβ
2 +1(t)x+

∫ t

0

gα(t− s)ASβα(s)xds, t ≥ 0.

(c) For all x ∈ X, (gα ∗ Sβα)(t)x ∈ D(A) and Sβα(t)x = gαβ
2 +1(t)x+A

∫ t

0

gα(t− s)Sβα(s)xds, t ≥ 0.

(d) Sβα(0) = gαβ
2 +1(0). Thus, Sβα(0) = I if β = 0 and Sβα(0) = 0 if β > 0.

Proof. Let ω be as in Definition 4.2. Let λ, µ > ω and x ∈ D(A). Then x = (I − µ−αA)−1y for some
y ∈ X. Since (I − µ−αA)−1 and (I − λ−αA)−1 are bounded and commute, and since the operator A is
closed, we obtain from the definition of Sβα that,

Ŝβα(λ)x =

∫ ∞
0

e−λtSβα(t)x dt = Ŝβα(λ)(I − µ−αA)−1y

= λ−
αβ
2 λα−1λ−α(I − λ−αA)−1(I − µ−αA)−1y

= (I − µ−αA)−1λ−
αβ
2 λα−1λ−α(I − λ−αA)−1y

= (I − µ−αA)−1λ−
αβ
2 λα−1(λα −A)−1y

= (I − µ−αA)−1Ŝβα(λ)y

=

∫ ∞
0

e−λt(I − µ−αA)−1Sβα(t)y dt.

By the uniqueness theorem for the Laplace transform and by continuity, we get that

Sβα(t)x = (I − µ−αA)−1Sβα(t)y = (I − µ−αA)−1Sβα(t)(I − µ−αA)x, ∀ t ≥ 0.(4.2)

It follows from (4.2) that Sβα(t)x ∈ D(A). Hence, Sβα(t)D(A) ⊂ D(A) for every t ≥ 0. It follows also from
(4.2) that ASβα(t)x = Sβα(t)Ax for all x ∈ D(A) and t ≥ 0 and we have shown the assertion (a).

Next, let x ∈ D(A). Using the convolution theorem, we get that∫ ∞
0

e−λtgαβ
2 +1(t)x dt = λ−

αβ
2 −1x = λ−

αβ
2 λα−1(λα −A)−1(I − λ−αA)x

= Ŝβα(λ)(I − λ−αA)x = Ŝβα(λ)x− λ−αŜβα(λ)Ax

=

∫ ∞
0

e−λt
[
Sβα(t)x−

∫ t

0

gα(t− s)Sβα(s)Ax ds

]
.

By the uniqueness theorem for the Laplace transform we obtain the assertion (b).
Next, let λ ∈ ρ(A) be fixed, x ∈ X and set y := (λ−A)−1x ∈ D(A). Let z := (gα ∗ Sβα)(t)x, t ≥ 0. We

have to show that z ∈ D(A) and Az = Sβα(t)x− gαβ
2 +1(t)x. Using part (b) we obtain that

z =(λ−A)(gα ∗ Sβα)(t)y = λ(gα ∗ Sβα)(t)y −A(gα ∗ Sβα)(t)y

=λ(gα ∗ Sβα)(t)y − (Sβα(t)y − gαβ
2 +1(t)y) ∈ D(A).
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Therefore,

Az =λA(gα ∗ Sβα)(t)y −ASβα(t)y + gαβ
2 +1(t)Ay

=λ(gα ∗ASβα)(t)y − Sβα(t)Ay + gαβ
2 +1(t)(λy − x)

=λ(gα ∗ASβα)(t)y − Sβα(t)(λy − x) + gαβ
2 +1(t)(λy − x)

=λ
[
(gα ∗ASβα)(t)y − Sβα(t)y + gαβ

2 +1(t)y
]

+ Sβα(t)x− gαβ
2 +1(t)x

=Sβα(t)x− gαβ
2 +1(t)x,

and we have shown part (c).
Finally, it follows from the strong continuity of Sβα(t) on [0,∞) and from the assertion (c) that Sβα(0)x =

gαβ
2 +1(0)x for every x ∈ X. This implies the properties in part (d) and the proof is finished. �

The corresponding result for the family Pβα is given in the following lemma. Its proof runs similar to
the proof of Lemma 4.5 and we shall omit it.

Lemma 4.6. Let A be a closed linear operator with domain D(A) defined on a Banach space X. Let
1 < α ≤ 2, β ≥ 0 and assume that A generates an (α, α)β-resolvent family Pβα. Then the following
properties hold.

(a) Pβα(t)D(A) ⊂ D(A) and APβα(t)x = Pβα(t)Ax for all x ∈ D(A), t ≥ 0.

(b) For all x ∈ D(A), Pβα(t)x = gα( β2 +1)(t)x+

∫ t

0

gα(t− s)APβα(s)xds, t ≥ 0.

(c) For all x ∈ X, (gα ∗ Pβα)(t)x ∈ D(A) and Pβα(t)x = gα( β2 +1)(t)x+A

∫ t

0

gα(t− s)Pβα(s)xds, t ≥ 0.

(d) Pα(0) = gα( β2 +1)(0) = 0.

Remark 4.7. Let A be a closed linear operator with domain D(A) defined on a Banach space X. Let
1 < α ≤ 2 and β ≥ 0.

(i) If A generates an (α, 1)0 = (α, 1)-resolvent family Sα, then it follows from Lemma 4.5 (c) that
D(A) is necessary dense in X.

(ii) We notice that if A generates an (α, 1)β-resolvent family Sβα and D(A) is dense in X then this
does not necessary imply that β = 0. Some examples will be given in Section 8.

(iii) The examples presented below in Corollary 4.15 show that in general (β > 0) the domain of A is
not necessary dense in X.

A family S(t) on X is called non-degenerate if whenever we have S(t)x = 0 for all t ∈ [0, τ ] (for some
fixed τ > 0), then it follows that x = 0. It follows from Lemma 4.5 and Lemma 4.6 that the families
Sβα and Pβα are non-degenerate. We have the following description of the generator A of the resolvent
family Sβα. We refer to [3, Lemma 3.2.2] for related results in the case of integrated semigroups and [3,
Proposition 3.14.5] in the case of cosine families. The corresponding result for the case 0 < α ≤ 1 and
β ≥ 0 is contained in [29, Proposition 6.8] which was proved by using the Laplace transform. Here,
provide an alternative proof which does not use the Laplace transform.

Proposition 4.8. Let A be a closed linear operator on a Banach space X with domain D(A). Let
1 < α ≤ 2, β ≥ 0 and assume that A generates an (α, 1)β- resolvent family Sβα. Then

A = {(x, y) ∈ X ×X, Sβα(t)x = gαβ
2 +1(t)x+ (gα ∗ Sβα)(t)y, ∀ t > 0}.(4.3)

Proof. First we notice that since the (α, 1)β- resolvent family Sβα is non-degenerate, the right hand side
of (4.3) defines a single-valued operator. Next, let x, y ∈ X. We have to show that x ∈ D(A) and Ax = y
if and only if

(4.4) Sβα(t)x = gαβ
2 +1(t)x+ (gα ∗ Sβα)(t)y, ∀ t > 0.
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Indeed, let x ∈ D(A) and assume that Ax = y. Since A generates an (α, 1)β- resolvent family Sβα and
Ax = y, then (4.4) follows from Lemma 4.5. Conversely, let x, y ∈ X and assume that (4.4) holds. Let
λ ∈ ρ(A). It follows from (4.4) and Lemma 4.5 that for all t ∈ [0, τ ],

(λ−A)−1(gα ∗ Sβα)(t)y = (λ−A)−1A(gα ∗ Sβα)(t)x

= −(gα ∗ Sβα)(t)x+ λ(λ−A)−1(gα ∗ Sβα)(t)x.

This implies that

(gα ∗ Sβα)(t)
[
(λ−A)−1y + x− λ(λ−A)−1x

]
= 0.

Since Sβα is non-degenerate, we have that (λ−A)−1y+x−λ(λ−A)−1x = 0 and this implies that x ∈ D(A)
and Ax = y. The proof is finished. �

Lemma 4.9. Let A be a closed linear operator on a Banach space X and let 1 < α ≤ 2, β ≥ 0. Assume
that A generates an (α, 1)β-resolvent family Sβα. Then for every x ∈ D(A) the mapping t 7→ Sβα(t)x is
differentiable on (0,∞) and

(4.5) (Sβα)′(t)x = gαβ
2

(t)x+ Pβα(t)Ax, t > 0.

Proof. Let x ∈ D(A). Then it is clear that the right-hand side of (4.5) belongs to C((0,∞),L(X)).
Taking the Laplace transform and using the fact that Sβα(0) = 0, we get that for Re(λ) > ω (where ω is
the real number from the definition of Sβα and Pβα),

(̂Sβα)′(λ)x = λŜβα(λ)x = λλ−
αβ
2 λα−1(λα −A)−1x = λ−

αβ
2 λα(λα −A)−1x.

On the other hand, for Re(λ) > ω,

ĝαβ
2

(λ)x+ P̂βα(λ)Ax =λ−
αβ
2 x+ λ−

αβ
2 (λα −A)−1Ax = λ−

αβ
2 x− λ−

αβ
2 (λα −A)−1(λα −A− λα)x

=λ−
αβ
2 x− λ−

αβ
2 x+ λ−

αβ
2 λα(λα −A)−1x = λ−

αβ
2 λα(λα −A)−1x.

By the uniqueness theorem for the Laplace transform and continuity of the right-hand side of (4.5), we
conclude that the identity (4.5) holds. �

Next, we give the principle of extrapolation of the families Sβα and Pβα in terms of the parameter β.

Proposition 4.10. Let A be a closed linear operator on a Banach space X and let 1 < α ≤ 2, β ≥ 0.
Then the following assertions hold.

(a) If A generates an (α, α)β-resolvent family Pβα, then it generates an (α, α)β
′
-resolvent family Pβ′α

for every β′ ≥ β and for every x ∈ X,

(4.6) Pβ
′

α (t)x = (g
α β
′−β
2

∗ Pβα)(t)x, ∀ t ≥ 0.

(b) If A generates an (α, 1)β-resolvent family Sβα, then it generates an (α, 1)β
′
-resolvent family Sβ′α

for every β′ ≥ β and for every x ∈ X,

(4.7) Sβ
′

α (t)x = (g
α β
′−β
2

∗ Sβα)(t)x, ∀ t ≥ 0.

Proof. Let A be a closed linear operator on a Banach space X and let 1 < α ≤ 2, β ≥ 0.
(a) Assume that A generates an (α, α)β-resolvent family Pβα. Then, by definition, there exists ω ≥ 0

such that {λα : Re(λ) > ω} ⊂ ρ(A) and

(λα −A)−1x = λ
αβ
2

∫ ∞
0

e−λtPβα(t)xdt, Re(λ) > ω, x ∈ X.(4.8)

Let β′ ≥ β and let Pβ′α be given in (4.6). Using Lemma 4.6 we have that for every x ∈ X and t ≥ 0,

Pβ
′

α (t)x =(g
α β
′−β
2

∗ Pβα)(t)x = (g
α β
′−β
2

∗ gα( β2 +1))(t)x+A
(
g
α β
′−β
2

∗ gα ∗ Pβα
)

(t)x

=g
α( β

′
2 +1)

(t)x+A
(
g
α( β

′−β
2 +1)

∗ Pβα
)

(t)x.
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Hence, Pβ′α is strongly continuous from [0,∞) into L(X). By (4.6), we have that for every x ∈ X and
t ≥ 0,

(g1 ∗ Pβ
′

α )(t)x = (g
α β
′−β
2 +1

∗ Pβα)(t)x,

and since by hypothesis ‖(g1 ∗Pβα)(t)x‖ ≤Meωt‖x‖, x ∈ X, t ≥ 0, for some constants M,ω ≥ 0, it follows

from Lemma 4.3 that there exist some constants M ′, ω′ ≥ 0 such that ‖(g1 ∗ P β
′

α )(t)x‖ ≤ M ′eω
′t‖x‖,

x ∈ X, t ≥ 0. Next, using (4.8), we have that for Re(λ) > ω, x ∈ X and β′ ≥ β,

(λα −A)−1x =λ
αβ
2

∫ ∞
0

e−λtPβα(t)xdt = λ
αβ′
2 λα

β−β′
2

∫ ∞
0

e−λtPβα(t)xdt

=λ
αβ′
2

∫ ∞
0

e−λsg
α β−β

′
2

(s) ds

∫ ∞
0

e−λtPβα(t)xdt

=λ
αβ′
2

∫ ∞
0

e−λt(g
α β−β

′
2

∗ Pβα)(t)xdt = λ
αβ′
2

∫ ∞
0

e−λtPβ
′

α (t)xdt.

Hence, A generates an (α, α)β
′
-resolvent family Pβ′α given by (4.6) and we have shown the assertion (a).

(b) The proof of this part follows the lines of the proof of part (a) where now we use Lemma 4.5. �

The following example shows that a generation of an (α, 1)β or (α, α)β-resolvent family does not imply
a generation of an (α′, 1)β or (α′, α′)β-resolvent family for α′ > α > 1. That is, an extrapolation property
in terms of the parameter α does not always hold.

Example 4.11. Let 1 ≤ p < ∞ and let ∆p be the realization of the Laplacian in Lp(RN ). It is well-
known that ∆p generates an analytic C0-semigroup of contractions of angle π/2. Hence, for every ε > 0,
there exists a constant C > 0 such that

(4.9) ‖(λ−∆p)
−1‖ ≤ C

|λ|
, λ ∈ Σπ−ε.

Let θ ∈ [0, π) and let the operator Ap on Lp(RN ) be given by Ap := eiθ∆p. It follows from (4.9) that

‖(λ−Ap)−1‖ = ‖(λ− eiθ∆p)
−1‖ = ‖(λe−iθ −∆p)

−1‖ ≤ C

|λ|
, λe−iθ ∈ Σπ−ε.(4.10)

Now, let 1 < α < 2. It follows from (4.10) that, if
π

2
< θ <

(
1− α

4

)
π, then ρ(Ap) ⊃ Σαπ

2
and

‖(λ−Ap)−1‖ ≤ C

|λ|
, λ ∈ Σαπ

2
.(4.11)

By [8, Proposition 3.8], the estimate (4.11) implies that Ap generates an (α, 1) = (α, 1)0-resolvent family
on Lp(RN ). Hence, by Proposition 4.10 (c), Ap generates an (α, 1)β-resolvent family on Lp(RN ) for
any β ≥ 0. But one can verify by inspection of the resolvent set of Ap that it does not generate an
(2, 1)β-resolvent family, that is a β-times integrated cosine family on Lp(RN ) for any β ≥ 0. However,
Ap does generates a bounded analytic semigroup.

Remark 4.12. In view of the asymptotic expansion of the Wright function (see e.g. [23, 50]), for a locally
integrable function f : [0,∞) → X which is exponentially bounded at infinity, and for any 0 < σ < 1,
the integral

∫∞
0

Φσ(τ)f(τ) dτ converges. This property will be frequently used in the remainder of the
article without any mention.

Concerning subordination of resolvent families we have the following preliminary result.

Lemma 4.13. Let A be a closed linear operator on a Banach space X. Let 1 < α ≤ 2, β ≥ 0. Then the
following assertions hold.

(a) Assume that A generates an (α, α)β-resolvent famlily Pβα. Let 1 < α′ < α, σ := α′

α and set

P (t)x := σtσ−1

∫ ∞
0

sΦσ(s)Pβα(stσ)xds, t > 0, x ∈ X.(4.12)
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Then (g1 ∗ P )(t)x is exponentially bounded. Moreover, (g1 ∗ P )(t)x = P(t)x where

P(t)x :=

∫ ∞
0

σs

tσ+1
Φσ(st−σ)(g 1

σ
∗ Pβα)(s)xds, t > 0, x ∈ X.(4.13)

(b) Assume that A generates an (α, 1)β-resolvent famlily Sβα. Let 1 < α′ < α, σ := α′

α and set

S(t)x :=

∫ ∞
0

1

tσ
Φα(st−σ)(g 1

σ
∗ Sβα)(s)xds, t > 0, x ∈ X.(4.14)

Then S is exponentially bounded. Moreover, S(t)x = (g1 ∗ S)(t)x where

S(t)x =

∫ ∞
0

Φσ(s)Sβα(stσ)x ds, ∀ t ≥ 0, x ∈ X.(4.15)

Proof. Let A, α and β be as in the statement of the lemma.

(a) Assume that A generates an (α, α)β-resolvent famlily Pβα and let 1 < α′ < α, σ := α′

α and x ∈ X.

Let P (t) be given by (4.12). By hypothesis, there exist M,ω ≥ 0 such that ‖(g1 ∗ Pβα)(t)x‖ ≤ Meωt‖x‖
for every x ∈ X, t ≥ 0. We show that there exist some constants M1, ω1 ≥ 0 such that for every x ∈ X,
‖(g1 ∗ P )(t)x‖ ≤ M1e

ω1t‖x‖, t ≥ 0. Using (4.12), Fubini’s theorem, (2.13), (2.6) and (2.9), we get that
for every t ≥ 0 and x ∈ X,∥∥∥∥∫ t

0

P (τ)x dτ

∥∥∥∥ ≤∫ ∞
0

sΦσ(s)

∥∥∥∥∫ t

0

στσ−1Pβα(sτσ)x dτ

∥∥∥∥ ds =

∫ ∞
0

Φσ(s)

∥∥∥∥∥
∫ stσ

0

Pβα(τ)x dτ

∥∥∥∥∥ ds
≤M‖x‖

∫ ∞
0

Φσ(s)eωst
σ

ds = M‖x‖
∞∑
n=0

(ωtσ)n

n!

∫ ∞
0

Φσ(s)sn ds

≤M‖x‖
∞∑
n=0

(ωtσ)n

n!

Γ(n+ 1)

Γ(σn+ 1)
= M‖x‖

∞∑
n=0

(ωtσ)n

Γ(σn+ 1)
= M‖x‖Eσ,1(ωtσ)

≤M1e
tω

1
σ ‖x‖,

for some constant M1 ≥ 0. Taking the Laplace transform of (4.13) by using (2.11) and Fubini’s theorem,
we have that for Re > ω and x ∈ X,∫ ∞

0

e−λtP(t)x dt =

∫ ∞
0

e−λt
∫ ∞

0

σs

tσ+1
Φσ(st−σ)(g 1

σ
∗ Pβα)(s)xds dt

=

∫ ∞
0

e−λ
σs(g 1

σ
∗ Pβα)(s)xds = λ−1λ−

α′β
2 (λα

′
−A)−1x.

Similarly, we have that for Re > ω and x ∈ X,∫ ∞
0

e−λt(g1 ∗ P )(t)x dt =λ−1

∫ ∞
0

e−λtP (t)x dt = λ−1

∫ ∞
0

e−λtσtσ−1

∫ ∞
0

sΦσ(s)Pβα(stσ)x ds dt

=λ−1

∫ ∞
0

Pβα(τ)x

∫ ∞
0

e−λt
στ

tσ+1
Φσ(τt−σ) dt dτ = λ−1

∫ ∞
0

e−τλ
σ

Pβα(τ)x dτ

=λ−1λ−
α′β
2 (λα

′
−A)−1x.

By the uniqueness theorem for the Laplace transform and by continuity, we have that (g1∗P )(t)x = P(t)x
for all t ≥ 0 and x ∈ X and this completes the proof of part (a).

(b) Assume that A generates an (α, 1)β-resolvent family Sβα and let 1 < α′ < α, σ := α′

α and x ∈ X.

Then there exist some constants M,ω ≥ 0 such that ‖(g1 ∗ Sβα)(t)x‖ ≤ Meωt‖x‖, t ≥ 0. Since 1
σ > 1, it

follows from Lemma 4.3 that there exist some constants M1, ω1 ≥ 0 such that for every t ≥ 0 and x ∈ X,

‖(g 1
σ
∗ Sβα)(t)x‖ ≤M1e

ω1t‖x‖.(4.16)
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Using (4.14), (2.13), (4.16), (2.6) and (2.9), we have that for every x ∈ X, t > 0,

‖S(t)x‖ ≤M1‖x‖
∫ ∞

0

1

tσ
Φσ(st−σ)eω1s ds = M1‖x‖

∫ ∞
0

Φσ(τ)eω1τt
σ

dτ

≤M1‖x‖
∞∑
n=0

(ω1t
σ)n

n!

∫ ∞
0

Φσ(τ)τn dτ = M1‖x‖
∞∑
n=0

(ω1t
σ)n

n!

Γ(n+ 1)

Γ(σn+ 1)

≤M1‖x‖
∞∑
n=0

(ω1t
σ)n

Γ(σn+ 1)
= M1Eσ,1(ω1t

σ)‖x‖ ≤Metω
1
σ
1 ‖x‖,

for some constant M ≥ 0 and this completes the proof of the lemma. �

Next, we present the principle of subordination of the families Sβα and Pβα in terms of the parameter α.

Theorem 4.14. Let A be a closed linear operator on a Banach space X and let 1 < α ≤ 2, β ≥ 0. Then
the following assertions hold.

(a) If A generates an (α, α)β-resolvent family Pβα, then it generates an (α′, α′)β-resolvent family Pβα′
for every 1 < α′ < α and

(4.17) Pβα′(t)x = σtσ−1

∫ ∞
0

sΦσ(s)Pβα(stσ)x ds, ∀ t > 0, x ∈ X, where σ :=
α′

α
.

(b) If A generates an (α, 1)β-resolvent family Sβα, then it generates an (α′, 1)β-resolvent family Sβα′
for every 1 < α′ < α and

(4.18) Sβα′(t)x =

∫ ∞
0

Φσ(s)Sβα(stσ)x ds, ∀ t ≥ 0, x ∈ X, where σ :=
α′

α
.

Proof. Let A be a closed linear operator on a Banach space X and let 1 < α ≤ 2, β ≥ 0.

(a) Assume that A generates an (α, α)β-resolvent family Pβα. Let 1 < α′ < α and let Pβα′ be given by

(4.17). Then it is clear that Pβα′ is strongly continuous from (0,∞) into L(X). We show that Pβα′(t) is

strongly continuous at 0. Since Pβα(t) ' gα( β2 +1)(t) = tα(
β
2

+1)−1

Γ(α( β2 )+1
as t→ 0, we get from (4.17) that

Pβα′(t) ' t
α′
α −1t

α′
α α( β2 +1)−α′α = tα

′( β2 +1)−1 as t→ 0.

We have shown that Pβα′(t) is strongly continuous at 0. By Lemma 4.13(a), there exist some constants

M1, ω1 ≥ 0 such that ‖(g1 ∗Pβα′)(t)x‖ ≤M1e
ω1t, x ∈ X, t ≥ 0. Now, it follows from (4.8) and (2.11) that

{λα′ : Re(λ) > ω} ⊂ ρ(A) and for Re(λ) > ω, x ∈ X,

(λα
′
−A)−1x =λ

α′β
2

∫ ∞
0

e−λ
σtPβα(t)xdt = λ

α′β
2

∫ ∞
0

e−λt
∫ ∞

0

σ
s

tσ+1
Φσ(st−σ)Pβα(s)xds dt

=λ
α′β
2

∫ ∞
0

e−λtσtσ−1

∫ ∞
0

sΦσ(s)Pβα(stσ)xds dt = λ
α′β
2

∫ ∞
0

e−λtPβα′(t)x dt.

Hence, A generates an (α′, α′)β-resolvent family Pβ
′

α′ given by (4.17) and we have shown part (a).
(b) Now assume that A generates an (α, 1)β-resolvent family Sβα. Then by definition, there exists ω ≥ 0

such that {λα : Re(λ) > ω} ⊂ ρ(A) and

(4.19) λα−1(λα −A)−1x = λ
αβ
2

∫ ∞
0

e−λtSβα(t)x dt, Re(λ) > ω, ∀ x ∈ X.

Let 1 < α′ < α and let Sβα′ be given by (4.18). Then it is clear that Sβα′ is strongly continuous from
[0,∞) into L(X). By Lemma 4.13(b), there exist some constant M1, ω1 ≥ 0 such that for every x ∈ X,

‖(g1 ∗ Sβα′)(t)x‖ ≤ M1e
ω1t‖x‖, t ≥ 0. It follows from (4.19) and (2.12) that {λα′ : Re(λ) > ω} ⊂ ρ(A)
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and for Re(λ) > ω, x ∈ X,

λα
′−1(λα

′
−A)−1x =λ

α′β
2 λσ−1

∫ ∞
0

e−λ
σtSβα(t)xdt = λ

α′β
2

∫ ∞
0

e−λt
∫ ∞

0

1

tσ
Φσ(st−σ)Sβα(s)xds dt

=λ
α′β
2

∫ ∞
0

e−λt
∫ ∞

0

Φσ(s)Sβα(stσ)xds dt = λ
α′β
2

∫ ∞
0

e−λtSβα′(t)x dt.

Hence, A generates an (α′, 1)β-resolvent family Sβ
′

α′ given by (4.18). The proof of the theorem is finished.
�

We have the following result as a corollary of the preceding theorem.

Corollary 4.15. Let 1 < α ≤ 2, β ≥ 0 and let A be a closed linear operator on a Banach space X.
If A generates an exponentially bounded β−times integrated cosine family (Cβ(t)), then A generates an
exponentially bounded (α, 1)β-resolvent family (Sβα(t)) given by

(4.20) Sβα(t)x =

∫ ∞
0

t−
α
2 Φα

2
(st−

α
2 )Cβ(s)xds =

∫ ∞
0

Φα
2

(τ)Cβ(τt
α
2 )xdτ, t > 0, x ∈ X.

In particular, it follows from the first representation formula in (4.20) that (Sβα(t)) is analytic for t > 0,
and, from the second one, that Sβα(0) = Cβ(0).

Let (Pβα(t)) be the associated (α, α)β-resolvent family generated by A which exists by Remark 4.4 (b).
Then for every x ∈ X,

Pβα(t)x =
α

2

∫ ∞
0

s

t
α
2 +1

Φα
2

(st−
α
2 )Cβ(s)xds =

α

2

∫ ∞
0

τ

t1−
α
2

Φα
2

(τ)Cβ(τt
α
2 )xdτ, t > 0.(4.21)

Proof. Let α, β and A be as in the statement of the theorem. The fact that A generates an (α, 1)β-
resolvent family Sβα and an (α, α)β-resolvent family Pβα is a direct consequence of Theorem 4.14 since
by hypothesis A generates a β-times integrated cosine family, that is a (2, 1)β-resolvent family, and a
β-times integrated sine family, that is a (2, 2)β-resolvent family. The formulas (4.20) and (4.21) are the
corresponding formulas (4.18) and (4.17), respectively, in Theorem 4.14. It remains to show that Sβα and
Pβα are exponentially bounded. By hypothesis, (Cβ(t)) is exponentially bounded, that is, there exist some
constants M,ω ≥ 0 such that ‖Cβ(t)x‖ ≤ Meωt‖x|| for all t ≥ 0, x ∈ X. Using (4.20), (2.13), (2.6) and
(2.9), we have that for every x ∈ X, t ≥ 0,

‖Sβα(t)x‖ ≤
∫ ∞

0

Φα
2

(τ)‖Cβ(τt
α
2 )x‖dτ ≤M‖x‖

∫ ∞
0

Φα
2

(τ)eωτt
α
2 dτ

≤M‖x‖
∞∑
n=0

(ωt
α
2 )n

n!

∫ ∞
0

Φα
2

(τ)τn dτ = M‖x‖
∞∑
n=0

(ωt
α
2 )n

n!

Γ(n+ 1)

Γ(α2 n+ 1)

≤M‖x‖
∞∑
n=0

(ωt
α
2 )n

Γ(α2 n+ 1)
= M‖x‖Eα

2 ,1
(ωt

α
2 ) ≤M1e

tω
2
α ‖x‖,

for some constant M1 ≥ 0 and we have shown that Sβα is exponentially bounded.
We note that Pβα is bounded in a neighborhood of t = 0+ by strong continuity on [0,∞). We show

that there Pβα is exponentially bounded away from 0. Indeed, using (4.21), (2.13) , (2.6) and (2.9), we
have that for every t ≥ ε and x ∈ X,

‖Pβα(t)x‖ ≤M
∫ ∞

0

τ

t1−
α
2

Φα
2

(τ)eωτt
α
2 ‖x‖dτ ≤M‖x‖

∫ ∞
0

τΦα
2

(τ)eωτt
α
2 dτ

≤M‖x‖
∞∑
n=0

(ωt
α
2 )n

n!

∫ ∞
0

Φα
2

(τ)τn+1dτ = M‖x‖
∞∑
n=0

(ωt
α
2 )n

n!

Γ(n+ 2)

Γ(α2 (n+ 1) + 1)

≤M‖x‖
∞∑
n=0

(ωt
α
2 )n

Γ(α2 (n+ 1))
= M‖x‖Eα

2 ,
α
2

(ωt
α
2 ) ≤M1e

tω
2
α ‖x‖,

for some constant M1 ≥ 0, and this completes the proof. �
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We notice that alternatively, one can also show that Pβα is exponentially bounded on [0,∞) by using the
fact that Sβα is exponentially bounded and that Pβα(t)x = (gα−1∗Sβα)(t)x, x ∈ X, t ≥ 0 (by Remark 4.4(a)).

If B generates an exponentially bounded β-times integrated group (Uβ(t)), then A = B2 generates an

exponentially bounded β-times integrated cosine family (Cβ(t)) given by Cβ(t) =
Uβ(t)+Uβ(−t)

2 . More-
over, operators that satisfy the estimate (1.5) are generators of exponentially bounded integrated cosine
families (see [32, Theorem 2.2.4] or [40]). The corresponding situation for integrated semigroups is treated
in [3, Theorem 3.2.8].

Next, we show that we have a double subordination principle for the families Sβα and Pβα in terms of
the parameters α and β.

Corollary 4.16. Let A be a closed linear operator on a Banach space X and let 1 < α ≤ 2, β ≥ 0. Then
the following assertions hold.

(a) If A generates an (α, α)β-resolvent family Pβα, then it generates a β
2 -times integrated semigroup

(T β
2
(t)) satisfying (g1 ∗ T β

2
)(t) is exponentially bounded and for every x ∈ X, and t > 0,

T β
2
(t)x = σtσ−1

∫ ∞
0

sΦσ(s)Pβα(stσ)x ds, where σ :=
1

α
.

(a) If A generates an (α, 1)β-resolvent family Sβα, then it generates a β
2 -times integrated semigroup

(T β
2
(t)) satisfying (g1 ∗ T β

2
)(t) is exponentially bounded and for every x ∈ X, and t ≥ 0,

T β
2
(t)x =

∫ ∞
0

Φσ(s)Sβα(stσ)x ds, ∀ t ≥ 0, where σ :=
1

α
.

The proof of Corollary 4.16 is a simple combination of the proofs of Proposition 4.10, Theorem 4.14
and Corollary 4.15.

Remark 4.17. (i) It follows from Theorem 4.14 and Corollary 4.16 that we have the following more
general situation. Let 1 < α ≤ 2 and β ≥ 0 be given. If A generates an (α, 1)β-resolvent

family Sβα, then A also generates the (α′, 1)
β
2 -resolvent family S

β
2

α′ introduced in [8, 28, 29] for any
0 < α′ ≤ 1. More precisely, in [29, Definition 4.2], for 0 < α′ ≤ 1 and β ≥ 0, an (α′, 1)β-resolvent
family associated to a closed linear operator A defined on a Banach space X, has been defined to

be a strongly continuous function Sβα′ : [0,∞) → L(X) such that, ‖(g1 ∗ Sβα′)(t)x‖ ≤ Meωt‖x||,
x ∈ X, t ≥ 0, for some constants M,ω ≥ 0, {λα′ : Re(λ) > ω} ⊂ ρ(A), and

λα
′−1(λα

′
−A)−1x = λα

′β

∫ ∞
0

e−λtSβα′(t)xdt, Re(λ) > ω, x ∈ X.

In the same direction, we observe that a generator of an (α, 1)-resolvent family for 1 < α ≤ 2
is already the generator of an analytic strongly continuous semigroup.

(ii) We mention the following remarkable result obtained in [8, Section 3]. Let A be a closed linear
operator on a Banach space X. If A generates a bounded analytic strongly continuous semigroup
(T (t)) of angle π/2, then A generates an (α, 1)0 = (α, 1)-resolvent family Sα on X for every
1 < α < 2, and hence, generates an (α, 1)β-resolvent family Sβα on X for every 1 < α < 2 and
β ≥ 0. But unfortunately, there is no explicit representation of Sβα(t) in terms of T (t).

(iii) In general, generators of resolvent families even in the case β = 0 are not stable under bounded
perturbations. In the case β = 0, an example in [8, Example 2.24] shows that they need not be
stable by perturbations by multiple of the identities. Therefore the resolvent families obtained
through Corollary 4.15 are of special interest since they are stable under perturbations by multiple
of the identities. Other admissible perturbations have been studied, see e.g. [3, 32] and the
references therein.

From Lemma 4.13, Theorem 4.14 and Corollary 4.16 we derive the following result.
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Lemma 4.18. Let A be a closed linear operator on a Banach space X. Let 1 < α ≤ 2, β ≥ 0 and µ > 0.
Then the following assertions hold.

(a) Assume that A generates an (α, α)β-resolvent family Pβα. Let 1 ≤ α′ < α and let Pβα′ be the

(α′, α′)β-resolvent family generated by A, or the β
2 -times integrated semigroup (T β

2
(t)) generated

by A. Then for every x ∈ X and t > 0,∫ ∞
0

σs

tσ+1
Φσ(st−σ)(gµ ∗ Pβα)(s)xds = (gµσ ∗ Pβα′)(t)x, σ =

α′

α
(4.22)

and ∫ ∞
0

σs

tσ+1
Φσ(st−σ)(gµ ∗ Pβα)(s)xds = (gµσ ∗ T β

2
(t)x, σ =

1

α
.(4.23)

(b) Assume that A generates an (α, 1)β-resolvent family Sβα. Let 1 ≤ α′ < α, and let Sβα′ be the

(α′, 1)β-resolvent family generated by A, or the β
2 -times integrated semigroup (T β

2
(t)) generated

by A. Then for every x ∈ X and t > 0,∫ ∞
0

1

tσ
Φα(st−σ)(gµ ∗ Sβα)(s)xds = (gµσ ∗ Sβα′)(t)x, σ :=

α′

α
,(4.24)

and ∫ ∞
0

1

tσ
Φα(st−σ)(gµ ∗ Sβα)(s)xds = (gµσ ∗ T β

2
(t)x, σ :=

1

α
.(4.25)

Proof. Let A, α, β be as in the statement of the lemma and let x ∈ X and µ > 0.
(a) Assume that A generates an (α, α)β-resolvent family Pβα. Let ω be the real number from the

definition of Pβα. Let 1 ≤ α′ < α. Taking Laplace transform, we have that for Re(λ) > ω,

̂
(gµσ ∗ Pβα′)(λ)x = λ−µσλ−

α′β
2 (λα

′
−A)−1x = λ−µσ−

α′β
2 (λα

′
−A)−1x.(4.26)

On the other hand, using (2.11) and Fubini’s theorem, we obtain that for Re(λ) > ω,∫ ∞
0

e−λt
∫ ∞

0

σs

tσ+1
Φσ(st−σ)(gµ ∗ Pβα)(s)xds dt =

∫ ∞
0

e−λ
σs(gµ ∗ Pβα)(s)xds

=λ−σ(µ+αβ
2 )(λασ −A)−1x

=λ−σµ−
α′β
2 (λα

′
−A)−1x.(4.27)

In view of (4.26) and (4.27), the equality (4.22) follows from the uniqueness theorem for the Laplace
transform and by continuity. The proof of (4.23) follows the lines of the proof of (4.22).

(b) Similarly, for Re(λ) > ω (here ω be the real number from the definition of Sβα),

̂
(gσµ ∗ Sβα′)(λ)x = λ−σµλ−

α′β
2 λα

′−1(λα
′
−A)−1x = λ−σµ−

α′β
2 λα

′−1(λα
′
−A)−1x.(4.28)

Using (2.12) and Fubini’s theorem, we obtain for Re(λ) > ω,∫ ∞
0

e−λt
∫ ∞

0

1

tσ
Φα(st−σ)(gµ ∗ Sβα)(s)xds dt =λσ−1

∫ ∞
0

e−λ
σt(gαµ ∗ Sβα)(s)xds

=λσ−1λ−µσ−σ
αβ
2 )λσ(α−1)(λσα −A)−1x

=λσ−1λ−µσ−
α′β
2 )λα

′−σ(λα
′
−A)−1x

=λ−σµ−
α′β
2 λα

′−1(λα
′
−A)−1x.(4.29)

Using (4.28) and (4.29), the equality (4.24) also follows from the uniqueness theorem for the Laplace
transform and by continuity. The proof of (4.25) also follows the lines of the proof of (4.24). �

The following result on the regularity properties of the family Sβα is crucial and will be used several
times in the subsequent sections to obtain our main results.
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Lemma 4.19. Let A be a closed linear operator with domain D(A) defined on a Banach space X. Let

1 < α ≤ 2, β ≥ 0, k := dαβ2 e, n := dβe and assume that A generates an (α, 1)β-resolvent family Sβα. Then
the following properties hold.

(a) Let m ∈ N ∪ {0}. Then for every x ∈ D(Am+1) and t ≥ 0,

Sβα(t)x =

m∑
j=0

gα( β2 +j)+1(t)Ajx+

∫ t

0

gα(m+1)(t− s)Sβα(s)Am+1x ds.(4.30)

(b) For every x ∈ D(An+1), the map t 7→ (gk−αβ2
∗Sβα)(t)x belongs to Ck([0,∞);D(A))∩Ck+1([0,∞);X)

and for every t ≥ 0,

dk

dtk

[
(gk−αβ2

∗ Sβα)(t)x
]

=

n−1∑
j=0

gαj+1(t)Ajx+ (gα(n− β2 ) ∗ S
β
α)(t)Anx,(4.31)

and

dk+1

dtk+1

[
(gk−αβ2

∗ Sβα)(t)x
]

=

n∑
j=1

gαj(t)A
jx+ (gα(n− β2 )+α−1 ∗ S

β
α)(t)An+1x.(4.32)

In particular,

dj

dtj

[
gk−αβ2

∗ Sβα
]

(0)x = 0, j = 0, 1, . . . , k − 1,
dk

dtk

[
gk−αβ2

∗ Sβα
]

(0)x = x,(4.33)

and

dk+1

dtk+1

[
gk−αβ2

∗ Sβα
]

(0)x = 0,
dk+1

dtk+1

[
g1 ∗ gk−αβ2 ∗ S

β
α

]
(0)x = x.(4.34)

(c) In general, for every x ∈ D(An+1−i), i = 0, 1, . . . , n, the mapping t 7→ (gk−αβ2
∗ gαi ∗ Sβα)(t)x

belongs to Ck([0,∞);D(A)) and for every t ≥ 0,

dk

dtk

[
(gk−αβ2

∗ gαi ∗ Sβα)(t)x
]

=

n−i∑
j=0

gαj+1+αi(t)A
jx+ (gα(n− β2 ) ∗ gα ∗ S

β
α)(t)An+1−ix.(4.35)

(d) For every x ∈ D(An), the mapping t 7→ (gk−αβ2
∗ Sβα)(t)x belongs to Ck([0,∞);X) and the

equalities (4.31) and (4.33) hold.
(e) In general, for every x ∈ D(An−i), i = 0, 1, . . . , n, the mapping t 7→ (gk−αβ2

∗ gαi ∗Sβα)(t)x belongs

to Ck([0,∞);X) and for every t ≥ 0,

dk

dtk

[
(gk−αβ2

∗ gαi ∗ Sβα)(t)x
]

=

n−i∑
j=0

gαj+1+αi(t)A
jx+A(gα(n− β2 ) ∗ gα ∗ S

β
α)(t)An−ix.(4.36)

Proof. Let A be a closed linear operator with domain D(A) defined on a Banach space X. Let 1 < α ≤
2, β ≥ 0 and set k := dαβ2 e, n := dβe. Note that k ≤ n. Assume that A generates an (α, 1)β-resolvent

family Sβα.
(a) We prove (4.30) by induction. If m = 0, then for every x ∈ D(A), the equality (4.30) reads

Sβα(t)x = gαβ
2 +1(t)x+

∫ t

0

gα(t− s)Sβα(s)Ax ds, ∀ t ≥ 0
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which is given by Lemma 4.5(b). Assume that (4.30) holds for m − 1 for some m ∈ N. Now, let
x ∈ D(Am+1) ⊂ D(Am). Then using Lemma 4.5(b), we have that for every t ≥ 0,

Sβα(t)x =

m−1∑
j=0

gα( β2 +j)+1(t)Ajx+ (gαm ∗ Sβα)(t)Amx

=

m−1∑
j=0

gα( β2 +j)+1(t)Ajx+Am(gαm ∗ Sβα)(t)x

=

m−1∑
j=0

gα( β2 +j)+1(t)Ajx+Amgαm ∗
(
gαβ

2 +1x+ gα ∗ SβαAx
)

(t)

=

m−1∑
j=0

gα( β2 +j)+1(t)Ajx+ gα( β2 +m)+1(t)Amx+ (gα(m+1) ∗ Sαβ)(t)Am+1x

=

m∑
j=0

gα( β2 +j)+1(t)Ajx+ (gα(m+1) ∗ Sβα)(t)Am+1x.

We conclude that the equality (4.30) holds and this completes the proof of part (a).
(b) Let x ∈ D(An+1). Then using (4.30) with m = n we get that for every t ≥ 0,

(gk−αβ2
∗ Sβα)(t)x =

n∑
j=0

gk+αj+1(t)Ajx+ (gα(n+1)+k−αβ2
∗ Sβα)(t)An+1x.

Therefore, using Lemma 4.5(b), we have that for all t ≥ 0,

dk

dtk

[
(gk−αβ2

∗ Sβα)(t)x
]

=

n∑
j=0

gαj+1(t)Ajx+ (gα(n+1)−αβ2
∗ Sβα)(t)An+1x

=

n∑
j=0

gαj+1(t)Ajx+
(
gα(n− β2 ) ∗ gα ∗ S

β
α

)
(t)An+1x

=

n∑
j=0

gαj+1(t)Ajx+ (gα(n− β2 ) ∗ (Sβα − gαβ
2 +1))(t)Anx

=

n∑
j=0

gαj+1(t)Ajx+ (gα(n− β2 ) ∗ S
β
α)(t)Anx− gαn+1(t)Anx

=

n−1∑
j=0

gαj+1(t)Ajx+ (gα(n− β2 ) ∗ S
β
α)(t)Anx,

and we have shown (4.31). SinceAnx ∈ D(A), it follows from (4.31) and Lemma 4.5 that dk

dtk

[
(gk−αβ2

∗ Sβα)(t)x
]
∈

C([0,∞);D(A)). Hence, (gk−αβ2
∗ Sβα)(t)x ∈ Ck([0,∞);D(A)). Since g1(0) = 1 and gαj+1(0) = 0 for

every j = 1, 2, . . . , n− 1, the equalites in (4.33) follow from (4.31).
By Remark 4.4 and Lemma 4.9, A generates an (α, α)β-resolvent family Pβα and for every x ∈ D(A),

Sβα(t)x ∈ C([0,∞);D(A)) ∩ C1((0,∞);X). Now, let x ∈ D(An+1). We have to show that (gk−αβ2
∗

Sβα)(t)x ∈ Ck+1([0,∞);X) and (4.34) holds. It follows from (4.31), (4.5) and the fact that Sβα(t)Anx ∈



EXISTENCE, REGULARITY AND REPRESENTATION OF SOLUTIONS 19

C([0,∞);D(A)) ∩ C1((0,∞);X), that for every t ≥ 0,

dk+1

dtk+1
(gk−αβ2

∗ Sβα)(t)x =

n−1∑
j=1

gαj(t)A
jx+

[
(gα(n− β2 ) ∗ (Sβα)′)(t)Anx

]

=

n−1∑
j=1

gαj(t)A
jx+

[
gα(n− β2 ) ∗

(
gαβ

2
Anx+ PβαAn+1x

)
(t)
]

=

n∑
j=1

gαj(t)A
jx+ (gα(n− β2 ) ∗ P

β
α)(t)An+1x

=

n∑
j=1

gαj(t)A
jx+ (gα(n− β2 )+α−1 ∗ S

β
α)(t)An+1x ∈ C([0,∞);X),

and we have shown (4.32). Therefore, (gk−αβ2
∗ Sβα)(t)x ∈ Ck+1([0,∞);X). It also follows from (4.32)

that
dk+1

dtk+1

[
gk−αβ2

∗ Sβα
]

(0)x = 0.

Now, using (4.33) we get that

dk+1

dtk+1

[
g1 ∗ gk−αβ2 ∗ S

β
α

]
(0)x =

dk

dtk

[
gk−αβ2

∗ Sβα
]

(0)x = x

and this completes the proof of part (b).
(c) Let x ∈ D(An+1−i), i = 0, 1, . . . , n. Proceeding as in the proof of part (b) we get that for every

t ≥ 0,

(gαi ∗ gk−αβ2 ∗ S
β
α)(t)x =

n−i∑
j=0

gk+αj+αi+1(t)Ajx+ (gk+α(n− β2 ) ∗ gα ∗ S
β
α)(t)An+1−ix.

This implies that for every t ≥ 0,

dk

dtk

[
(gαi ∗ gk−αβ2 ∗ S

β
α)(t)x

]
=

n−i∑
j=0

gαj+αi+1(t)Ajx+ (gα(n− β2 ) ∗ gα ∗ S
β
α)(t)An+1−ix.

Using Lemma 4.5, the preceding equality shows that (gαi ∗ gk−αβ2 ∗ S
β
α)(t)x ∈ Ck([0,∞);D(A)) and one

has the equality (4.35).
(d) Let x ∈ D(An). Proceeding as in part (b), we also get the equality (4.31) and this implies that

(gk−αβ2
∗ Sβα)(t)x ∈ Ck([0,∞);X) and (4.33) holds.

(e) Let x ∈ D(An−i), i = 0, 1, . . . , n. Proceeding as in part (c), we get that (gk−αβ2
∗ gαi ∗ Sβα)(t)x ∈

Ck([0,∞);X) and the equality (4.35) holds. The proof of the lemma is finished. �

5. Resolvent families and the regularized abstract Cauchy problem

In this section we show that the above defined resolvent family Sβα is necessary and sufficient to solve
the regularized abstract Cauchy problem

(5.1)

{
Dαt v(t) = Av(t) + gαβ

2 +1(t)x, t > 0, 1 < α ≤ 2, β ≥ 0,

v(0) = v′(0) = 0,

where A is a closed linear operator with domain D(A) defined on a Banach space X. By a classical solution
of (5.1) we mean a function v ∈ C([0,∞);D(A)) ∩ C1([0,∞);X) such that (g2−α ∗ v) ∈ C2([0,∞);X)
and (5.1) is satisfied.

The following is the main result of this section.

Theorem 5.1. Let A be a closed linear operator with domain D(A) defined on a Banach space X. Let
1 < α ≤ 2 and β ≥ 0. Then the following assertions are equivalent.
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(i) The operator A generates an (α, 1)β-resolvent family Sβα on X.
(ii) For all x ∈ X, there exists a unique classical solution v of Problem (5.1) such that (g2−α ∗ v′)(t)

is exponentially bounded.

Proof. Let A, α and β be as the statement of the theorem.
(i) ⇒ (ii): Assume that A generates an (α, 1)β-resolvent family Sβα on X and let x ∈ X. Define

v(t) := (gα ∗ Sβα)(t)x =

∫ t

0

gα(t− s)Sβα(s)x ds, t ≥ 0.

Then v(0) = 0 and by Lemma 4.5 we have that v ∈ C([0,∞);D(A)). Since v′(t) = (gα−1 ∗ Sβα)(t)x, we
have that v ∈ C1([0,∞);X) and v′(0) = 0. Since for every t ≥ 0,

(g2−α ∗ v)(t) = (g2−α ∗ gα ∗ Sβα)(t)x = (g2 ∗ Sβα)(t)x,

it follows that (g2−α ∗ v) ∈ C2([0,∞);X). Since v(0) = v′(0) = 0, it follows from (2.1) and (2.3) that for
every t ≥ 0,

Dαt v(t) =(g2−α ∗ v′′)(t) =
d2

dt2
[(g2−α ∗ v)(t)]

=
d2

dt2
[
(g2 ∗ Sβα)(t)x

]
= Sβα(t)x = A(gα ∗ Sβα)(t)x+ gαβ

2 +1(t)x

=Av(t) + gαβ
2 +1(t)x.

Hence, v is a classical solution of (5.1). Since (g1 ∗ Sβα)(t) is exponentially bounded and for every x ∈ X,
t ≥ 0,

(g2−α ∗ v′)(t) = (g2−α ∗ gα−1 ∗ Sβα)(t)x = (g1 ∗ Sβα)(t)x,

it follows that (g2−α ∗ v′)(t) is exponentially bounded. Assume that (5.1) has two classical solutions
v1 and v2 and set V := v1 − v2. Then V ∈ C([0,∞);D(A)) ∩ C1([0,∞);X), V (0) = V ′(0) = 0,
(g2−α ∗ V ) ∈ C2([0,∞);X), (g2−α ∗ V )(t) is exponentially bounded and Dαt V (t) = AV (t) for every t > 0.
Taking the Laplace transform, we get that for Re(λ) > ω (where ω is the real number from the above

mentioned exponential boundedness), (λα − A)V̂ (λ) = 0. Since (λα − A) is invertible, we have that

V̂ (λ) = 0. By the uniqueness theorem for the Laplace transform and by continuity, we get that V (t) = 0
for every t ≥ 0. We have shown uniqueness of solutions and this completes the proof of part (ii).

(ii) ⇒ (i): For x ∈ X, we let Sα,β(t)x := Dαt v(t, x) where v(t, x) is the unique classical solution of
(5.1). Using (2.1) and the fact that v(0) = 0 = v′(0) we get that for every t ≥ 0,

(gα ∗ Sα,β)(t)x = (gα ∗ Dαt v)(t) = v(t, x)− v(0, x)− v′(0, x)t = v(t, x).

Hence, (gα ∗ Sα,β)(t)x ∈ D(A) for every x ∈ X, t ≥ 0, and one has the equality

(5.2) A(gα ∗ Sα,β)(t)x+ gαβ
2 +1(t)x = Av(t, x) + gαβ

2 +1(t)x = Sα,β(t)x.

By the closed graph theorem we also have that Sα,β(t) ∈ L(X) for t ≥ 0 and we note that Sα,β(t) is
strongly continuous on [0,∞). Since by hypothesis (g2−α ∗v′)(t) is exponentially bounded and given that
for every x ∈ X, t ≥ 0,

(g1 ∗ Sα,β)(t)x = (g1 ∗ g2−α ∗ v′′)(t) = (g2−α ∗ v′)(t),
we have that (g1 ∗Sα,β)(t)x is exponentially bounded. By the uniform exponential boundedness principle
[3, Lemma 3.2.14], we have that there exist some constants M,ω ≥ 0 such that

(5.3) ‖(g2−α ∗ v′)(t)‖ = ‖(g1 ∗ Sα,β)(t)x‖ ≤Meωt, t ≥ 0, x ∈ X.
Taking the Laplace transform on both sides of the equality (5.2) we get that for Re(λ) > ω (where ω is
the real number from the above mentioned exponential boundedness),

Aλ−αŜα,β(λ)x− Ŝα,β(λ)x = −λ−
αβ
2 −1x.

Multiplying the preceding equality by λα we get that

(λα −A)Ŝα,β(λ)x = λ−
αβ
2 λα−1x.
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The preceding equality shows that (λα−A) is surjective. To prove injectivity, suppose that (λα−A)x = 0
for some x ∈ D(A) and Re(λ) > ω, that is, Ax = λαx for Re(λ) > ω. It is enough to consider that

Ax = λαx for λ real and λ > ω. Then setting v(t) = (gαβ
2 +α ∗ Ẽ)(t)x where Ẽ(t)x = Eα,1(λαtα)x,

we prove that v is a solution of Equation (5.1). Obviously v ∈ C([0,∞);D(A)) ∩ C1([0,∞);X) and
(g2−α ∗ v) ∈ C2([0,∞);X). Using (2.8), we have that for every t > 0,

Dαt v(t) =g2−α ∗
d2

dt2

[
(gαβ

2 +α ∗ Ẽ)(t)x
]

= (gαβ
2
∗ Ẽ)(t)x = gαβ

2
∗ (g1 + λαgα ∗ Ẽ))(t)x

=gαβ
2 +1(t)x+ (gαβ

2 +α ∗ Ẽ)(t)λαx = gαβ
2 +1(t)x+ (gαβ

2 +α ∗ Ẽ)(t)Ax

=gαβ
2 +1(t)x+A(gαβ

2 +α ∗ Ẽ)(t)x = gαβ
2 +1(t)x+Av(t).

We have shown that v is a solution of Equation (5.1). Since all the solutions v of Equation (5.1) satisfy

the estimate (5.3), we must have this estimate for the solution v(t) = (gαβ
2 +α ∗ Ẽ)(t)x just found. But

using (2.6) we have that

Ẽ(t) =

∞∑
n=0

λαntαn

Γ(αn+ 1)

which gives

(g2−α ∗ v′)(t) = (gαβ
2 +1 ∗ Ẽ)(t)x = t

αβ
2 +1

∞∑
n=0

λαntαn

Γ(αn+ αβ
2 + 2)

= t
αβ
2 +1Eα,αβ2 +2(λαtα)x,

and hence by (2.9), ‖(g2−α ∗ v′)(t)‖ ≤ Meλt‖x‖ and this estimate is sharp. Therefore we can only have
the estimate (5.3) if x = 0. We have shown that (λα −A) is injective, hence is invertible and

Ŝα,β(λ)x = λ−
αβ
2 λα−1(λα −A)−1x,

that is, for Re(λ) > ω, and x ∈ X,

λα−1(λα −A)−1x = λ
αβ
2

∫ ∞
0

e−λtSα,β(t)x dt.

Hence, A generates an (α, 1)β-resolvent family Sβα and by the uniqueness theorem for the Laplace trans-
form and by continuity we have that Sβα(t)x = Sα,β(t)x for every x ∈ X, t ≥ 0. We have shown the
assertion (i) and the proof is finished. �

Remark 5.2. (a) We notice that in Theorem 5.1, the assertion (g2−α∗v′)(t) is exponentially bounded
agrees with the limiting cases α = 1 in which the conclusion reads (g1∗v′)(t) = v(t) is exponentially
bounded (see e.g. [3, Theorem 3.2.13]), and α = 2, in which we have that v′(t) is exponentially
bounded. An example showing that the exponential boundedness assumption cannot be omitted
is included in [3, Remark 3.2.15(b)] for the limiting case α = 1.

(b) We mention that if the family Sβα is exponentially bounded, then the solution v in Theorem 5.1
is exponentially bounded as well.

6. Resolvent families and the homogeneous abstract Cauchy problem

In this section we use the above defined resolvent families to investigate the existence, regularity and
the representation of solutions of the homogeneous abstract Cauchy problem

(6.1)

{
Dαt u(t) = Au(t), t > 0, 1 < α ≤ 2,

u(0) = x, u′(0) = y,

where A is a closed linear operator with domain D(A) defined on a Banach space X and x, y are given
vectors in X.

Definition 6.1. A function u ∈ C([0,∞);D(A)) ∩ C1([0,∞);X) is said to be a classical solution of
Problem (6.1) if g2−α ∗ (u− u(0)− u′(0)g2) ∈ C2([0,∞);X) and (6.1) is satisfied.
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We adopt the following definition of mild solutions.

Definition 6.2. A function u ∈ C([0,∞);X) is said to be a mild solution of (6.1) if Iαt u(t) := (gα∗u)(t) ∈
D(A) for every t ≥ 0, and

u(t) = x+ ty +A

∫ t

0

gα(t− s)u(s) ds, ∀ t ≥ 0.

We have the following uniqueness result.

Proposition 6.3. Let A be a closed and linear operator with domain D(A) defined on a Banach space
X and let 1 < α ≤ 2. Then the following assertions hold.

(a) If u is a classical solution of (6.1), then it is a mild solution of (6.1).
(b) If (λα −A) is invertible for Re(λ) large enough, and if a mild solution u exists and (g1 ∗ u)(t) is

exponentially bounded, then it is unique.

Proof. Let 1 < α ≤ 2 and let A be a closed linear operator with domain D(A) defined on a Banach space
X.

(a) Let u be a classical solution of (6.1). Since u ∈ C([0,∞);D(A)), we have that (gα ∗ u)(t) ∈
C([0,∞);D(A)). Since Dαt u(t) = Au(t), that is, (g2−α ∗u′′)(t) = Au(t), we have that (gα ∗g2−α ∗u′′)(t) =
A(gα ∗ u)(t), i.e., (g2 ∗ u′′)(t) = A(gα ∗ u)(t). Hence, u(t) − u(0) − tu′(0) = A(gα ∗ u)(t) for every t ≥ 0
and we have shown that u is a mild solution of (6.1).

(b) Assume that (6.1) has two mild solutions u and v and set U := u − v. Then U ∈ C([0,∞);X),
(gα ∗ U)(t) ∈ D(A) for every t ≥ 0 and U(t) = A(gα ∗ U)(t). Taking the Laplace transform, we get that

(I − λ−αA)Û(λ) = 0 for Re(λ) > ω (where ω ≥ 0 is the real number from the exponential boundedness

of (g1 ∗u)(t)). Since (I −λ−αA) is invertible, we have that Û(λ) = 0. By the uniqueness theorem for the
Laplace transform and by continuity, we get that U(t) = 0 for every t ≥ 0. Hence, u(t) = v(t) for every
t ≥ 0. The proof is finished. �

Remark 6.4. We mention that to prove the existence of solutions of Problem (6.1), we proceed by direct
construction and make minimal use of the Laplace transform.

The following result is the main result of this section.

Theorem 6.5. Let A be a closed linear operator with domain D(A) defined on a Banach space X. Let

1 < α ≤ 2, β ≥ 0 and set n := dβe, k := dαβ2 e. Assume that A generates an (α, 1)β-resolvent family Sβα.
Then the following assertions hold.

(a) For every x, y ∈ D(An+1), the function u(t) := D
αβ
2
t Sβα(t)x + D

αβ
2
t (g1 ∗ Sβα)(t)y is the unique

classical solution of (6.1).

(b) For every x, y ∈ D(An), the function u(t) := D
αβ
2
t Sβα(t)x + D

αβ
2
t (g1 ∗ Sβα)(t)y is the unique mild

solution of (6.1).

Proof. Let A, α, β, n := dβe and k := dαβ2 e be as in the statement of the theorem. First we prove
existence of classical and mild solutions.

(a) Let x, y ∈ D(An+1) and set u(t) := D
αβ
2
t Sβα(t)x + D

αβ
2
t (g1 ∗ Sβα)(t)y. It follows from Lemma 4.19

that u ∈ C([0,∞);D(A)) ∩ C1([0,∞);X), u(0) = x and u′(0) = y. Since u(0) = x, u′(0) = y, using
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Lemma 4.19 and Lemma 4.5, we have that for every t ≥ 0,

g2−α ∗ (u− u(0)− u′(0)g2)(t) =g2−α ∗

n−1∑
j=0

gαj+1(t)Ajx+ (gα(n− β2 ) ∗ S
β
α)(t)Anx− x


+ g2−α ∗

n−1∑
j=0

gαj+2(t)Ajy + (gα(n− β2 )+1 ∗ S
β
α)(t)Any − ty


=

n−1∑
j=1

gαj+3−α(t)Ajx+ (gα(n− β2 )+2−α ∗ S
β
α)(t)Anx

+

n−1∑
j=1

gαj+4−α(t)Ajy + (gα(n− β2 )+3−α ∗ S
β
α)(t)Any

=

n∑
j=1

gαj+3−α(t)Ajx+ (gα(n− β2 )+2 ∗ S
β
α)(t)An+1x

+

n∑
j=1

gαj+4−α(t)Ajy + (gα(n− β2 )+3 ∗ S
β
α)(t)An+1y.(6.2)

Using (6.2) and Lemma 4.19 we get that for every t ≥ 0,

d2

dt2

[
g2−α ∗ (u− u(0)− u′(0)g2)

]
(t) =

n∑
j=1

gαj+1−α(t)Ajx+ (gα(n− β2 ) ∗ S
β
α)(t)An+1x

+

n∑
j=1

gαj+2−α(t)Ajy + (gα(n− β2 ) ∗ S
β
α)(t)An+1y

∈ C([0,∞);X).
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Hence, g2−α ∗ (u− u(0)− u′(0)g2) ∈ C2([0,∞);X). We have to show that u satisfies (6.1). Using (4.32)
in Lemma 4.19, we get that for every t ≥ 0,

Dαt u(t) =Dαt D
αβ
2
t Sβα(t)x+ Dαt D

αβ
2
t (g1 ∗ Sβα)(t)y

=g2−α ∗
[
dk+2

dtk+2

(
gk−αβ2

∗ Sβα
)

(t)x+
dk+2

dtk+2

(
gk−αβ2

∗ g1 ∗ Sβα
)

(t)y

]

=g2−α ∗
d

dt

 n∑
j=1

gαj(t)A
jx+ (gα(n− β2 )+α−1 ∗ S

β
α)(t)An+1x


+ g2−α ∗

 n∑
j=1

gαj(t)A
jy + (gα(n− β2 )+α−1 ∗ S

β
α)(t)An+1y


=

n∑
j=1

gαj+1−α(t)Ajx+ (gα(n− β2 ) ∗ S
β
α)(t)An+1x

+

n−1∑
j=0

gαj+1(t)Aj+1y + (gα(n− β2 ) ∗ g1 ∗ Sβα)(t)An+1y

=

n∑
j=0

gαj+1(t)Aj+1x+ (gα(n− β2 ) ∗ S
β
α)(t)An+1x

+

n−1∑
j=0

gαj+1(t)Aj+1y + (gα(n− β2 ) ∗ g1 ∗ Sβα)(t)An+1y

=A

 n∑
j=0

gαj+1(t)Ajx+ (gα(n− β2 ) ∗ S
β
α)(t)Anx


+A

n−1∑
j=0

gαj+1(t)Ajy + (gα(n− β2 ) ∗ g1 ∗ Sβα)(t)Any


=A

[
D

αβ
2
t Sβα(t)x+D

αβ
2
t (g1 ∗ Sβα)(t)y

]
=Au(t)

and this completes the proof of the existence part in the assertion (a).

(b) Let x, y ∈ D(An) and set u(t) := D
αβ
2
t Sβα(t)x+D

αβ
2
t g1 ∗Sβα(t)y. Using (4.31) in the proof of Lemma

4.19 we get that for every t ≥ 0,

u(t) =
dk

dtk

[
(gk−αβ2

∗ Sβα)(t)x
]

+
dk

dtk

[
(gk−αβ2

∗ g1 ∗ Sβα)(t)y
]

=

n−1∑
j=0

gαj+1(t)Ajx+ (gα(n− β2 ) ∗ S
β
α)(t)Anx

+

n−1∑
j=0

gαj+2(t)Ajy + (gα(n− β2 ) ∗ g1 ∗ Sβα)(t)Any.(6.3)
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It follows from (6.3) and Lemma 4.19 that u ∈ C([0,∞);X). Using (6.3) we get that for every t ≥ 0,

Iαt u(t) := (gα ∗ u)(t) =

n−1∑
j=0

gαj+1+α(t)Ajx+ (gα(n− β2 ) ∗ gα ∗ S
β
α)(t)Anx

+

n−1∑
j=0

gαj+2+α(t)Ajy + (gα(n− β2 ) ∗ g1 ∗ gα ∗ Sβα)(t)Any.(6.4)

It follows from (6.4) and Lemma 4.5 that Iαt u(t) ∈ D(A) for every t ≥ 0. Using Lemma 4.19, Lemma 4.5
and (4.35), we have that for every t ≥ 0,

u(t) =

n−1∑
j=0

gαj+1(t)Ajx+ (gα(n− β2 ) ∗ S
β
α)(t)Anx+

n−1∑
j=0

gαj+2(t)Ajy + (gα(n− β2 ) ∗ g1 ∗ Sβα)(t)Any

=x+ ty +

n−1∑
j=1

gαj+1(t)Ajx+ (gα(n− β2 ) ∗ S
β
α)(t)Anx+

n−1∑
j=1

gαj+2(t)Ajy + (gα(n− β2 ) ∗ g1 ∗ Sβα)(t)Any

=x+ ty +A

n−1∑
j=1

gαj+1(t)Aj−1x+ (gα(n− β2 ) ∗ S
β
α)(t)An−1x


+A

n−1∑
j=1

gαj+2(t)Aj−1y + (gα(n− β2 ) ∗ g1 ∗ Sβα)(t)An−1y


=x+ ty +A

 n∑
j=1

gαj+1(t)Aj−1x+ (gα(n− β2 ) ∗ gα ∗ S
β
α)(t)Anx


+A

 n∑
j=1

gαj+2(t)Aj−1y + (gα(n− β2 ) ∗ g1 ∗ gα ∗ Sβα)(t)Any


=x+ ty +A

n−1∑
j=0

gαj+1+α(t)Ajx+ (gα(n− β2 ) ∗ gα ∗ S
β
α)(t)Anx


+A

n−1∑
j=0

gαj+2+α(t)Ajy + (gα(n− β2 ) ∗ g1 ∗ gα ∗ Sβα)(t)Any


=x+ ty +Agα ∗

n−1∑
j=0

gαj+1(t)Ajx+ (gα(n− β2 ) ∗ S
β
α)(t)Anx


+Agα ∗

n−1∑
j=0

gαj+2(t)Ajy + (gα(n− β2 ) ∗ g1 ∗ Sβα)(t)Any


=x+ ty +A(gα ∗ u)(t).

(6.5)

Hence, u is a mild solution of (6.1) and this completes the proof of the existence part in the assertion
(b).

It remains to show the uniqueness of solutions. Let x, y ∈ D(An) and let u be a mild solution. We just
have to show that (g1 ∗ u)(t) is exponentially bounded. Using the first equality in (6.5), we have that for
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every t ≥ 0,

(g1 ∗ u)(t) =

n−1∑
j=0

gαj+2(t)Ajx+ (gα(n− β2 )+1 ∗ S
β
α)(t)Anx+

n−1∑
j=0

gαj+3(t)Ajy + (gα(n− β2 ) ∗ g2 ∗ Sβα)(t)Any.

Using Lemma 4.3 we get from the preceding equality that there exist some constants M,ω ≥ 0 such that
for every t ≥ 0,

‖(g1 ∗ u)(t)‖ ≤Meωt
n∑
j=0

(‖Ajx‖+ ‖Ajy‖).

We have shown that (g1 ∗ u)(t) is exponentially bounded. Now, Proposition 6.3 implies the uniqueness
of mild and classical solutions. The proof of the theorem is finished. �

Remark 6.6. We observe that although in (6.1) we have the Caputo fractional derivative Dαt , the solution

is given by the Riemann-Liousville derivative D
αβ
2
t Sβα(t)x + D

αβ
2
t (g1 ∗ Sβα)(t)y. If αβ

2 is not an integer,

then the function D
αβ
2
t Sβα(t)x+ D

αβ
2
t (g1 ∗ Sβα)(t)y is not a solution of (6.1), unless x = y = 0.

7. Resolvent families and the inhomogeneous Cauchy problem

In this section we study the solvability and the representation of solutions of the inhomogeneous
fractional order abstract Cauchy problem

(7.1)

{
Dαt u(t) = Au(t) + f(t), t > 0, 1 < α ≤ 2,

u(0) = x, u′(0) = y,

where A is a closed linear operator with domain D(A) defined in a Banach space, f : [0,∞) → X is a
given function and x, y are given vectors in X.

Definition 7.1. A function u ∈ C([0,∞);D(A)) ∩ C1([0,∞);X) is said to be a classical solution of
Problem (7.1) if g2−α ∗ (u− u(0)− u′(0)t) ∈ C2([0,∞);X) and (7.1) is satisfied.

We adopt the following definition of mild solutions.

Definition 7.2. A function u ∈ C([0,∞);X) is said to be a mild solution of Problem (7.1) if Iαt u(t) :=
(gα ∗ u)(t) ∈ D(A) for every t ≥ 0, and

u(t) = x+ ty +A

∫ t

0

gα(t− s)u(s) ds+

∫ t

0

gα(t− s)f(s) ds, ∀ t ≥ 0.

We have the following uniqueness result.

Proposition 7.3. Let A be a closed linear operator with domain D(A) defined on a Banach space X and
let 1 < α ≤ 2. Then the following assertions hold.

(a) If u is a classical solution of (7.1), then it is a mild solution of (7.1).
(b) If (λα −A) is invertible for Re(λ) large enough, and if a mild solution u exists and (g1 ∗ u)(t) is

exponentially bounded, then it is unique.

Proof. Let 1 < α ≤ 2 and let A be a closed linear operator with domain D(A) defined on a Banach space
X.

(a) Let u be a classical solution of (7.1). Since u ∈ C([0,∞);D(A)), we have that (gα ∗ u)(t) ∈
C([0,∞);D(A)). Since Dαt u(t) = Au(t) + f(t), that is, (g2−α ∗ u′′)(t) = Au(t) + f(t), we have that
(gα ∗ g2−α ∗ u′′)(t) = A(gα ∗ u)(t) + (gα ∗ f)(t), i.e., (g2 ∗ u′′)(t) = A(gα ∗ u)(t) + (gα ∗ f)(t). Hence,
u(t)−u(0)− tu′(0) = A(gα ∗u)(t)+(gα ∗f)(t) for every t ≥ 0 and we have shown that u is a mild solution
of (7.1).

(b) Assume that (7.1) has two mild solutions u and v and set U := u − v. Then U ∈ C([0,∞);X),
(gα ∗ U)(t) ∈ D(A) for every t ≥ 0 and U(t) = A(gα ∗ U)(t). Taking the Laplace transform, we get that

(I − λ−αA)Û(λ) = 0 for Re(λ) > ω (where ω ≥ 0 is the real number from the exponential boundedness
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of (g1 ∗u)(t)). Since (I −λ−αA) is invertible, we have that Û(λ) = 0. By the uniqueness theorem for the
Laplace transform and by continuity, we get that U(t) = 0 for every t ≥ 0. Hence, u(t) = v(t) for every
t ≥ 0. The proof is finished. �

Remark 7.4. As for the homogeneous equation in Section 6, to prove the existence of mild and classical
solutions of Problem (7.1), we proceed by a direct method without the use of the Laplace transform.

We have the following result of existence and representation of classical and mild solutions which is
the main result of this section.

Theorem 7.5. Let A be a closed linear operator with domain D(A) defined on a Banach space X. Let

1 < α ≤ 2, β ≥ 0 and set n := dβe, k := dαβ2 e. Assume that A generates an (α, 1)β-resolvent family Sβα.

Let Pβα be the (α, α)β-resolvent family generated by A. Then the following assertions hold.

(a) For every f ∈ Ck([0,∞);D(A))∩Ck+1([0,∞);X), f (2i)(0), f (2i+1)(0) ∈ D(An+1−i), i = 0, 1, . . . , k−1
2 ,

if k is odd, f (2i)(0) ∈ D(An+1−i), i = 0, 1, . . . , k2 , f (2i+1)(0) ∈ D(An+1−i), i = 0, . . . , k2 − 1, if

k is even, D
αβ
2
t f(t) := (gk−αβ2

∗ f (k))(t) is exponentially bounded, and for every x, y ∈ D(An+1),

Problem (7.1) has a unique classical solution u given by

(7.2) u(t) = D
αβ
2
t Sβα(t)x+D

αβ
2
t (g1 ∗ Sβα)(t)y +D

αβ
2
t (Pβα ∗ f)(t), t ≥ 0.

(b) For every f ∈ Ck([0,∞);X), f (2i)(0), i = 0, 1, . . . , k−1
2 , f (2i+1)(0) ∈ D(An−i), i = 0, 1, . . . , k−1

2 −
1, if k is odd, f (2i)(0), f (2i+1)(0) ∈ D(An−i), i = 0, 1, . . . , k2 − 1, if k is even, D

αβ
2
t f(t) :=

(gk−αβ2
∗ f (k))(t) is exponentially bounded, and for every x, y ∈ D(An), Problem (7.1) has a

unique mild solution u given by (7.2).

Proof. Let A, α, β, n and k be as in the statement of the theorem. First we prove existence of classical
and mild solutions.

(a) Let x, y ∈ D(An+1). It follows from the proof of Theorem 6.5(a) that D
αβ
2
t Sβα(t)x + D

αβ
2
t (g1 ∗

Sβα)(t)y ∈ C([0,∞);D(A)) ∩ C1([0,∞);X). Moreover,

D
αβ
2
t Sβα(0)x+D

αβ
2
t (g1 ∗ Sβα)(0)y = x,

d

dt

[
D

αβ
2
t Sβα

]
(0)x+

d

dt

[
D

αβ
2
t (g1 ∗ Sβα)

]
(0)y = y.

Now, assume that f satisfies the assumptions in the statement of part (a) of the theorem. Using Remark
4.4 and (2.5), we get that for every t ≥ 0,

D
αβ
2
t (Pβα ∗ f)(t) =D

αβ
2
t (gα−1 ∗ Sβα ∗ f)(t) =

dk

dtk

[
(gk−αβ2

∗ gα−1 ∗ Sβα ∗ f)(t)
]

=
dk−1

dtk−1

[
(gk−αβ2

∗ gα−1 ∗ Sβα)(t)f(0)
]

+ (gk−αβ2
∗ gα−1 ∗ Sβα ∗ f ′)(t)

=

k−1∑
i=0

dk−1−i

dtk−1−i

[
(gk−αβ2

∗ gα−1 ∗ Sβα)(t)f (i)(0)
]

+ (gk−αβ2
∗ gα−1 ∗ Sβα ∗ f (k))(t)

=

k−1∑
i=0

dk

dtk

[
(gk−αβ2

∗ gα−1 ∗ gi+1 ∗ Sβα)(t)f (i)(0)
]

+ (gk−αβ2
∗ gα−1 ∗ Sβα ∗ f (k))(t)

=

k−1∑
i=0

gα ∗
dk

dtk

[
(gk−αβ2

∗ gi ∗ Sβα)(t)f (i)(0)
]

+ (gk−αβ2
∗ gα−1 ∗ Sβα ∗ f (k))(t).(7.3)
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• If k is odd, then using (7.3) we have that for every t ≥ 0,

D
αβ
2
t (Pβα ∗ f)(t) =

k−1
2∑
i=0

gα ∗
dk

dtk

[
(gk−αβ2

∗ g2i ∗ Sβα)(t)f (2i)(0)
]

+

k−1
2 −1∑
i=0

gα ∗
dk

dtk

[
(gk−αβ2

∗ g2i+1 ∗ Sβα)(t)f (2i+1)(0)
]

+ (gk−αβ2
∗ gα−1 ∗ Sβα ∗ f (k))(t)

=

k−1
2∑
i=0

gα+i(2−α) ∗
dk

dtk

[
(gk−αβ2

∗ gαi ∗ Sβα)(t)f (2i)(0)
]

+

k−1
2 −1∑
i=0

gα+(2−α)i+1 ∗
dk

dtk

[
(gk−αβ2

∗ gαi ∗ Sβα)(t)f (2i+1)(0)
]

+ (gk−αβ ∗ gα−1 ∗ Sβα ∗ f (k))(t).

Using the preceding equality, Lemma 4.19(c) and Lemma 4.5, we get that for every t ≥ 0,

D
αβ
2
t (Pβα ∗ f)(t) =

k−1
2∑
i=0

n−1−i∑
j=0

gα(i+j)+(2−α)i+α+1(t)Ajf (2i)(0)

+

k−1
2∑
i=0

(gα(n− β2 )+(2−α)i+α ∗ S
β
α)(t)An−if (2i)(0)

+

k−1
2 −1∑
i=0

n−1−i∑
j=0

gα(i+j)+(2−α)i+α+2(t)Ajf (2i+1)(0)

+

k−1
2 −1∑
i=0

(gα(n− β2 )+(2−α)i+α+1 ∗ S
β
α)(t)An−if (2i+1)(0)

+ (gk−αβ2
∗ gα−1 ∗ Sβα ∗ f (k))(t).(7.4)

Using (7.4) we get that for every t ≥ 0,

d

dt

[
D

αβ
2
t (Pβα ∗ f)(t)

]
=

k−1
2∑
i=0

n−1−i∑
j=0

gα(i+j)+(2−α)i+α(t)Ajf (2i)(0)

+

k−1
2∑
i=0

(gα(n−β)+(2−α)i+α−1 ∗ Sβα)(t)An−if (2i)(0)

+

k−1
2 −1∑
i=0

n−1−i∑
j=0

gα(i+j)+(2−α)i+α+1(t)Ajf (2i+1)(0)

+

k−1
2 −1∑
i=0

(gα(n− β2 )+(2−α)i+α ∗ S
β
α)(t)An−if (2i+1)(0)

+ (gk−αβ2
∗ gα−1 ∗ Sβα)(t)f (k)(0) + (gk−αβ2

∗ gα−1 ∗ Sβα ∗ f (k+1))(t).(7.5)

Now, it follows from (7.4), (7.5), Lemma 4.19, Lemma 4.5 and the hypothesis, that D
αβ
2
t (Pβα ∗

f)(t) ∈ C([0,∞);D(A)) ∩ C1([0,∞);X).
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• If k is even, proceeding as for the case k odd and using Lemma 4.19, Lemma 4.5 and the hypothesis,

we also get that D
αβ
2
t (Pβα ∗ f)(t) ∈ C([0,∞);D(A)) ∩ C1([0,∞);X).

From (7.4) and (7.5), it is clear that Dαβ
t (Pβα ∗ f)(0) = d

dt

[
D

αβ
2
t (Pβα ∗ f)

]
(0) = 0. We have shown that

u ∈ C([0,∞);D(A)) ∩ C1([0,∞);X), u(0) = x and u′(0) = y. By the proof of Theorem 6.5(a) we have

that g2−α ∗
[
D

αβ
2
t Sβα(t)x− x+D

αβ
2
t (g1 ∗ Sβα)(t)y − ty

]
∈ C2([0,∞);X). Using (7.4), we have that if k is

odd, then for every t ≥ 0,

d2

dt2

[
g2−α ∗D

αβ
2
t (Pβα ∗ f)(t)

]
=

k−1
2∑
i=0

n−1−i∑
j=0

gα(i+j)+(2−α)i+1(t)Ajf (2i)(0)

+

k−1
2∑
i=0

(gα(n− β2 )+(2−α)i ∗ S
β
α)(t)An−if (2i)(0)

+

k−1
2 −1∑
i=0

n−1−i∑
j=0

gα(i+j)+(2−α)i+2(t)Ajf (2i+1)(0)

+

k−1
2 −1∑
i=0

(gα(n− β2 )+(2−α)i+1 ∗ S
β
α)(t)An−if (2i+1)(0)

+ (gk−αβ2
∗ Sβα)(t)f (k)(0) + (gk−αβ2

∗ Sβα ∗ f (k+1))(t).

We get a similar formula if k is even. Therefore, (g2−α ∗ D
αβ
2
t (Pβα ∗ f)) ∈ C2([0,∞);X) and hence,

(g2−α ∗ (u − u(0) − u′(0)g2) ∈ C2([0,∞);X). It also follows from the proof of Theorem 6.5(a) that for
every t ≥ 0,

Dαt
[
D

αβ
2
t Sβα(t)x+D

αβ
2
t (g1 ∗ Sβα)(t)y

]
= A

[
D

αβ
2
t Sβα(t)x+D

αβ
2
t (g1 ∗ Sβα)(t)y

]
.(7.6)

Using Lemma 4.5, we get that for every t ≥ 0,

Dαt D
αβ
2
t (Pβα ∗ f)(t) =Dαt D

αβ
2
t (gα−1 ∗ Sβα ∗ f)(t)

=

(
g2−α ∗

d2

dt2

[
D

αβ
2
t (gα−1 ∗ Sβα ∗ f)

])
(t)

=
dk+2

dtk+2

[
(gk+2−αβ2 −α

∗ gα−1 ∗ Sβα ∗ f)(t)
]

=
dk+2

dtk+2

[
(gk+2 ∗ f)(t) + (gk+2−αβ2

∗Agα−1 ∗ Sβα ∗ f)(t)
]

=f(t) +A
dk

dtk

[
(gk−αβ2

∗ gα−1 ∗ Sβα ∗ f)(t)
]

=f(t) +AD
αβ
2
t (Pβα ∗ f)(t).(7.7)

It follows from (7.6) and (7.7) that Dαt u(t) = Au(t) + f(t) for every t ≥ 0. Hence, u is a classical solution
of (7.1) and this completes the proof of the existence part in the assertion (a).

(b) Let x, y ∈ D(An). It follows from the proof of Theorem 6.5(b) that D
αβ
2
t Sβα(t)x+D

αβ
2
t (g1∗Sβα)(t)y ∈

C([0,∞);X) and that Iαt

[
D

αβ
2
t Sβα(t)x+D

αβ
2
t (g1 ∗ Sβα)(t)y

]
∈ D(A) for all t ≥ 0. Assume that f satisfies

the hypothesis in the statement of part (b) of the theorem. Using (7.4), Lemma 4.6, Lemma 4.5 and
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Lemma 4.19, we have that if k is odd, then for every t ≥ 0,

Iαt D
αβ
2
t

(
Pβα ∗ f

)
(t) =gα ∗D

αβ
2
t

(
gα−1 ∗ Sβα ∗ f

)
(t)

=

k−1
2 −1∑
i=0

n−2−i∑
j=0

gα(i+j)+(2−α)i+α+1(t)Ajf (2i)(0)

+

k−1
2 −1∑
i=0

(gα(n− β2 )+(2−α)i+α ∗ S
β
α)(t)An−1−if (2i)(0)

+

k−1
2 −2∑
i=0

n−1−i∑
j=0

gα(i+j)+(2−α)i+α+2(t)Ajf (2i+1)(0)

+

k−1
2 −2∑
i=0

(gα(n− β2 )+(2−α)i+α+1 ∗ S
β
α)(t)An−1−if (2i+1)(0)

+ (gk−αβ2
∗ gα−1 ∗ gα ∗ Sβα ∗ f (k))(t) ∈ D(A).(7.8)

We get a similar formula if k is even. Hence, for every t ≥ 0,

Iαt u(t) = Iαt D
αβ
2
t Sβα(t)x+ Iαt D

αβ
2
t (g1 ∗ Sβα)(t)y + Iαt D

αβ
2
t

(
Pβα ∗ f

)
(t) ∈ D(A).

It follows from (6.5) in the proof of Theorem 6.5 that for every t ≥ 0,

D
αβ
2
t Sβα(t)x+D

αβ
2
t (g1 ∗ Sβα)(t)y = x+ ty +A

[
(gα ∗D

αβ
2
t Sβα)(t)x+ (gα ∗D

αβ
2
t (g1 ∗ Sβα))(t)y

]
.(7.9)

Proceeding as in (7.3) and using Lemma 4.5 and (2.3), we have that for every t ≥ 0,

D
αβ
2
t

(
Pβα ∗ f

)
(t) =

dk

dtk

[
(gk−αβ2

∗ gα−1 ∗ Sβα ∗ f)(t)
]

=
dk

dtk

[
(gk ∗ gα ∗ f)(t) +A(gα ∗ gk−αβ2 ∗ gα−1 ∗ Sβα ∗ f)(t)

]
=(gα ∗ f)(t) +Agα ∗

dk

dtk

[
(gk−αβ2

∗ gα−1 ∗ Sβα ∗ f)(t)
]

=(gα ∗ f)(t) +A(gα ∗D
αβ
2
t

(
Pβα ∗ f

)
)(t).(7.10)

Combining (7.9) and (7.10), we get that for every t ≥ 0,

u(t) =D
αβ
2
t Sβα(t)x+D

αβ
2
t (g1 ∗ Sβα)(t)y +D

αβ
2
t

(
Pβα ∗ f

)
(t)

=x+ ty +A(gα ∗ u)(t) + (gα ∗ f)(t).

Hence, u is a mild solution of Problem (7.1). This completes the proof of the existence part in the
assertion (b).

It remains to show the uniqueness of solutions. Let x, y ∈ D(An) and let f satisfy the assumptions in
part (b) of the theorem. Let u be a mild solution. Using (6.3) and proceeding as in (7.8) we get that, if
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k is odd, then for every t ≥ 0,

(g1 ∗ u)(t) =

n−1∑
j=0

gαj+2(t)Ajx+ (gα(n− β2 )+1 ∗ S
β
α)(t)Anx

+

n−1∑
j=0

gαj+3(t)Ajy + (gα(n− β2 ) ∗ g2 ∗ Sβα)(t)Any

+

k−1
2 −1∑
i=0

n−2−i∑
j=0

gα(i+j)+(2−α)i+2(t)Ajf (2i)(0)

+

k−1
2 −1∑
i=0

(gα(n− β2 )+(2−α)i+1 ∗ S
β
α)(t)An−1−if (2i)(0)

+

k−1
2 −2∑
i=0

n−1−i∑
j=0

gα(i+j)+(2−α)i+3(t)Ajf (2i+1)(0)

+

k−1
2 −2∑
i=0

(gα(n− β2 )+(2−α)i+2 ∗ S
β
α)(t)An−1−if (2i+1)(0)

+ (gk−αβ2
∗ gα ∗ Sβα ∗ f (k))(t).(7.11)

We get a similar equality if k is even. Since by assumption (g1 ∗ Sβα)(t) is exponentially bounded, and
that there exist some constants M1, ω1 ≥ 0 such that ‖(gk−αβ2 ∗ f

(k))(t)‖ ≤M1e
ω1t, t ≥ 0, it follows from

(7.11) that if k is odd, then there exist some constants M,ω ≥ 0 such that for every t ≥ 0,

‖(g1 ∗ u)(t)‖ ≤Meωt

 n∑
j=0

(‖Ajx‖+ ‖Ajy‖) +

k−1
2 −1∑
i=0

n−2−i∑
j=0

‖Ajf (2i)(0)‖+

k−1
2 −1∑
i=0

‖An−1−if (2i)(0)‖


+Meωt

 k−1
2 −2∑
i=0

n−1−i∑
j=0

‖Ajf (2i+1)(0)‖+

k−1
2 −2∑
i=0

‖An−1−if (2i+1)(0)‖+M1e
ω1t

 .
We get a similar estimate if k is even. We have shown that (g1 ∗u)(t) is exponentially bounded. Now, the
uniqueness of mild and classical solutions follows from Proposition 7.3 and this completes the proof. �

8. Applications

In this section we give some examples where the situations of the previous sections are applied.

Throughout this section Ω ⊂ RN denotes an open set with Lipschitz continuous boundary ∂Ω. Let
the real valued coefficients satisfy aij ∈ L∞(Ω), bj , cj , d ∈ L∞(Ω), i, j = 1, 2, . . . , N . We assume also that
there exists a constant µ > 0 such that

N∑
i,j=1

aij(x)ξiξj ≥ µ|ξ|2 for all ξ ∈ RN ,

for a.e. x ∈ Ω. Let A be the elliptic operator formally given by

(8.1) Au =

N∑
j=1

Dj

(
N∑
i=1

ai,jDiu+ bju

)
−

(
N∑
i=1

ciDiu+ du

)
.
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Example 8.1 (Dirichlet, Neumann and Robin boundary conditions on L2-spaces). For 1 <
α ≤ 2, we consider the fractional order Cauchy problem

(8.2)


Dαt u(t, x)−Au(t, x) = f(t, x), t > 0, x ∈ Ω,
∂u(t, z)

∂νA
+ γ(z)u(t, z) = 0, t > 0, z ∈ ∂Ω,

u(0, x) = u0(x),
∂u(0, x)

∂t
= u1(x), x ∈ Ω.

Here, u0, u1 ∈ L2(Ω), f ∈ C([0,∞);L2(Ω)), A is the operator given in (8.1),

∂u

∂νA
=

N∑
j=1

(
N∑
i=1

aijDiu+ bju

)
· νj ,

where ν denotes the outer normal vector of Ω at the boundary ∂Ω and γ ≥ 0 belongs to L∞(∂Ω) of
γ = ∞. If γ = ∞, then the boundary conditions in (8.2) become the Dirichlet boundary conditions
u(t, z) = 0, t > 0 and z ∈ ∂Ω (see e.g. [6, 7]).

We consider the first order Sobolev spaces

H1(Ω) := {u ∈ L2(Ω),

∫
Ω

|∇u|2 dx <∞}

endowed with the norm

‖u‖H1(Ω) :=

(∫
Ω

|u|2 dx+

∫
Ω

|∇u|2 dx
)1/2

,

and H1
0 (Ω) = D(Ω)

H1(Ω)
where D(Ω) denotes the space of test functions on Ω.

Let Aγ be the bilinear form on L2(Ω) with domain H1(Ω) and given for u, v ∈ H1(Ω) by

Aγ(u, v) :=

∫
Ω

N∑
j=1

(
N∑
i=1

aijDiu+ bju

)
Djv dx+

∫
Ω

 N∑
j=1

cjDju+ du

 v dx+

∫
∂Ω

γuv dσ,

where σ denotes the usual Lebesgue surface measure on the boundary ∂Ω, and let AD be the bilinear
form on L2(Ω) with domain H1

0 (Ω) and given for u, v ∈ H1
0 (Ω) by

AD(u, v) :=

∫
Ω

N∑
j=1

(
N∑
i=1

aijDiu+ bju

)
Djv dx+

∫
Ω

 N∑
j=1

cjDju+ du

 v dx.

It is easy to see that the bilinear forms Aγ and AD are closed in L2(Ω). Let A2,γ and A2,D be the closed
linear operators in L2(Ω) associated with the form Aγ and AD, respectively. That is,{

D(A2,γ) := {u ∈ H1(Ω), ∃ v ∈ L2(Ω), Aγ(u, ϕ) = (v, ϕ)L2(Ω), ∀ ϕ ∈ H1(Ω)}
A2,γu = v

and {
D(A2,D) := {u ∈ H1

0 (Ω), ∃ v ∈ L2(Ω), AD(u, ϕ) = (v, ϕ)L2(Ω), ∀ ϕ ∈ H1
0 (Ω)}

A2,Du = v.

One has the following more explicit description of the operators A2,γ and A2,D on L2(Ω).

D(A2,γ) = {u ∈ H1(Ω), Au ∈ L2(Ω),
∂u

∂νA
+ γu = 0}, A2,γu = Au,

and

D(A2,D) = {u ∈ H1
0 (Ω) : Au ∈ L2(Ω)}, A2,Du = Au.
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The operator A2,β (resp. A2,D) is a realization of the operator A in L2(Ω) with Robin boundary conditions
and Neumann boundary conditions if γ = 0 (resp. with Dirichlet boundary conditions). With this setting
Problem (8.2) can be rewritten as an abstract Cauchy problem in the Hilbert space L2(Ω),{

Dαt u(t) = Ãu(t) + f(t), t ≥ 0, 1 < α ≤ 2,

u(0) = u0, ut(0),= u1,

with Ã = A2,γ or A2,D. It is well-known (see e.g. [3]) that the operators A2,β and A2,D generate cosine
families on L2(Ω) and hence generate (α, 1)-resolvent families Sα for every 1 < α ≤ 2. Therefore all the
results in Theorem 7.5 hold for Problem (8.2) with n = k = 0.

Next, we consider the one-dimensional case.

Example 8.2 (Elliptic operators in one-dimension). Let a ∈ W 1,∞(0, 1) satisfy a(x) ≥ µ0 > 0 for
some constant µ0. Let b, c ∈ L∞(0, 1), 1 ≤ p <∞ and let αj , βj (j = 0, 1) be complex numbers such that
(αj , βj) 6= (0, 0). For 1 < α ≤ 2, we consider the fractional order Cauchy problem

(8.3)


Dαt u(t, x) = a(x)uxx(t, x) + b(x)ux(t, x) + c(x)u(t, x) + f(t, x), t > 0, x ∈ (0, 1),

αjux(t, j) + βju(t, j) = 0, j = 0, 1, t > 0,

u(0, x) = u0(x), ut(0, x) = u1(x), x ∈ (0, 1).

Let Ãp be the operator defined on Lp(0, 1) by

D(Ãp) := {u ∈W 2,p(0, 1) : αju
′(j) + βju(j) = 0, j = 0, 1}, Apu = a(x)u′′ + b(x)u′ + c(x)u.

The operator Ãp is a realization of A (given by Au = a(x)u′′ + b(x)u′ + c(x)u) on Lp(0, 1) with Dirichlet
boundary conditions if αj = 0, βj 6= 0 (j = 0, 1), with Neumann boundary conditions if αj 6= 0, βj = 0
(j = 0, 1) and Robin boundary conditions if αj 6= 0, βj 6= 0 (j = 0, 1). With the same assumption on

αj , βj , a realization Ã∞ of A with Dirichlet boundary condition on C0(0, 1) := {u ∈ C[0, 1] : u(0) =
u(1) = 0} or with Neumann and Robin boundary conditions on C[0, 1] is given by

D(Ã∞) := {u ∈ C2[0, 1] : αju
′(j) + βju(j) = 0, j = 0, 1}, A∞u = a(x)u′′ + b(x)u′ + c(x)u.

By [10, 30] the operator Ãp generates a cosine family on Lp(0, 1) and Ã∞ generates a cosine family on
C[0, 1] (on C0(0, 1) if it is Dirichlet boundary condition). The case of Wentzell (or dynamical) boundary
conditions on Lp(0, 1) × C and on C[0, 1] has been investigated in [1, 31]. Therefore, one has the same
results for Problem (8.3) as the ones given in Example 8.1. More precisely, letting Xp := Lp(0, 1) (or
Lp(0, 1) × C in the case of Wentzell boundary conditions) if 1 ≤ p < ∞ and X∞ = C[0, 1] (or C0(0, 1)
in the case of Dirichlet boundary condition), then all the results in Theorem 7.5 hold for Problem (8.3)
with n = k = 0.

Example 8.3 (Elliptic operators on generalLp-spaces). For simplicity we assume that Ω ⊂ RN
(N ≥ 2) is bounded. For 1 < α ≤ 2, we consider the fractional order Cauchy problem

(8.4)


Dαt u(t, x) = Au(t, x) + f(t, x), t > 0, x ∈ Ω,
∂u(t, z)

∂νA
+ γ(z)u(t, z) = 0, t > 0, z ∈ ∂Ω,

u(0, x) = u0(x),
∂u(0, x)

∂t
= u1(x), x ∈ Ω.

Here, u0, u1 ∈ Lp(Ω), f ∈ C([0,∞);Lp(Ω)), for some p ∈ [1,∞) (p 6= 2), or u0, u1 ∈ C(Ω), f ∈
C([0,∞];C(Ω)) are given functions, and the operator A is given in (8.1). Let Ã be the closed linear

operator in L2(Ω) introduced in Example 8.1. Recall that Ã = A2,γ or Ã = A2,D. For 2 ≤ p <∞, we let
Ap denote the part of the operator A2,γ in Lp(Ω) and for 1 ≤ p < 2, we let Ap be the closure in Lp(Ω)
of the operator B defined by

D(B) = {u ∈ D(A2,γ) ∩ Lp(Ω), Au ∈ Lp(Ω)}, Bu = A2,γu = Au.



34 VALENTIN KEYANTUO, CARLOS LIZAMA, AND MAHAMADI WARMA

The operator Ap is a realization of the operator A in Lp(Ω) with Robin boundary conditions, Neumann
boundary conditions if γ = 0 and Dirichlet boundary conditions if γ = ∞. By [30, 42], the operator Ap

generates a β-times integrated cosine family (Cβ(t)) on Lp(Ω) with β := N
∣∣∣ 12 − 1

p

∣∣∣. Hence, all the results

in Theorem 7.5 hold for Problem (8.4) with n := dβe and k := dαβ2 e.
Letting A∞ be a realization of the operator A with Robin, Neumann or Dirichlet boundary conditions

on L∞(Ω), we have that A∞ generates a β-times integrated cosine family on L∞(Ω) with β = N
2 and

one can also apply Theorem 7.5. We notice that D(A∞) is not dense in L∞(Ω).

Next, we consider the case of the Laplace operator on some special open subsets of RN .

Example 8.4 (The Laplace operator on some special open sets). Let Ω := RN or Ω := (0, 1)N ⊂
RN and let Ãp be a realization of the Laplace operator on Lp(Ω) (p 6= 2) with Dirichlet, Neumann or

Robin boundary conditions defined above. By [17, 24, 30] the operator Ãp generates a β-times integrated

cosine family on Lp(Ω) with β = (N − 1)
∣∣∣ 12 − 1

p

∣∣∣. Therefore, one has the same results as in Example 8.3

with here β = (N − 1)
∣∣∣ 12 − 1

p

∣∣∣.
As in the previous example, here also, letting A∞ be a realization of the Laplace operator with Robin,

Neumann or Dirichlet boundary conditions on L∞(Ω), we have that A∞ generates a β-times integrated
cosine family on L∞(Ω) with β = N−1

2 and one can also apply Theorem 7.5. We also notice that D(A∞)
is not dense in L∞(Ω).

We conclude the paper with an example involving a Schrödinger like operator.

Example 8.5. We consider the fractional order Schrödinger like equation

(8.5)

{
Dαt u(t, x) = eiθ∆pu(t, x) + f(t, x), t > 0, x ∈ RN , 1 < α < 2,

u(0, x) = u0(x), ∂u(0,x)
∂t = u1(x), x ∈ RN .

Here, the operator ∆p is a realization of the Laplace operator on Lp(RN ), 1 ≤ p <∞, the angle θ satisfies
π
2 < θ <

(
1− α

4

)
π. Let Ap := eiθ∆p. Then D(Ap) = W 2,p(RN ). We have shown in Example 4.11 that

Ap generates an (α, 1) = (α, 1)0-resolvent family Sα on Lp(RN ). Using Theorem 7.5 we get the following
result of existence of solutions to Problem (8.5).

• For every f ∈ C([0,∞);W 2,p(RN )) ∩ C1([0,∞);Lp(RN )) and u0, u1 ∈ W 2,p(RN ), Problem (8.5)
has a classical solution u.

• For every f ∈ C([0,∞);Lp(RN )) and u0, u1 ∈ Lp(RN ), Problem (8.5) has a mild solution u.
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