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1. Introduction

Many phenomena in physical sciences and engineering, and increasingly
in other areas, are modeled by evolutionary partial differential or integral
equations. Due to the importance of these models for the design and predic-
tion of behavior of concrete systems, a wide range of mathematical methods
have been developed over three centuries to study the properties and the
qualitative behavior of the corresponding differential equations.

The following model is typical of the above statement:

∂u(t, x)

∂t
= ∆u(t, x) + f(t, x), t > 0, x ∈ Ω,

∂u(t, z)

∂ν
+ γ(z)u(t, z) = g(t, z), t > 0, z ∈ ∂Ω,

u(0, x) = u0(x), x ∈ Ω.

(1.1)

This corresponds to the inhomogeneous heat equation with non-homoge-
neous Robin, Neumann or Dirichlet boundary conditions. Other equations
of interest are the transport equation, the Navier Stokes equations and the
Schrödinger equation. In many cases, one has to study nonlinear models
associated to the above systems.

Increasingly, it has been realized that properties of many phenomena oc-
curring in real life problems are not adequately described by evolution equa-
tions of integer order (typically 1 or 2) in time. Such is the case for phenom-
ena with memory effects, anomalous diffusion, polymer science, rheology,
material science, fractals and control theory. The references [10, 15, 16, 17,
28, 30, 32, 35] cover several of these phenomena and demonstrate the im-
portance of the fractional model. We remark that time fractional evolution
equations are a special case of more general classes of integral and integro-
differential equations. They are treated in a thorough way in the monograph
[37] by J. Prüss, including several applications to models in physics, most
notably viscoelasticity.

We shall be concerned with the following linear differential equation of
fractional order:

Dαt u(t) = Au(t) + f(t), t > 0, 0 < α ≤ 1, (1.2)

in which Dαt is the Caputo fractional derivative (see (2.2) below). Here X is a
complex Banach space, A is a closed linear operator inX and f : [0,∞)→ X
is a given function. The use of the Caputo fractional derivative for the
evolution problem has the advantage that the initial condition is formulated
in terms of the value of the solution u at 0. This has physically significant
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interpretations in concrete problems. In the case of the Riemann-Liouville
fractional derivative, one needs to know the solution in a right neighborhood
of 0.

Our aim is to construct a basic theory for the solutions of this equation
along with applications to some partial differential equations modeling phe-
nomena from science and engineering. To study the existence, uniqueness
and regularity of the solutions of Problem (1.2), in general, one needs an
operator family associated with the problem. For example, the theory of
strongly continuous semigroups has been developed to deal with the case
α = 1. In case A does not generate a semigroup (if α = 1), the concept of
exponentially bounded β-times integrated semigroups has been used in the
treatment of Problem (1.2). In [4, Section 2.1], an operator family called
Sα has been introduced to deal with the fractional case, that is, 0 < α ≤ 1.
More precisely, the family (Sα(t)) associated with the closed linear operator
A on a Banach space X has been defined to be a strongly continuous family

Sα : [0,∞) → L(X) such that, ‖
∫ t

0 Sα(s)x ds‖ ≤ Meωt for some constants
M,ω ≥ 0, {λα : Re(λ) > ω} ⊂ ρ(A), and

λα−1(λα −A)−1x =

∫ ∞
0

e−λtSα(t)xdt, Re(λ) > ω, x ∈ X.

It turns out that (S1(t)) is a strongly continuous semigroup. Unfortunately,
this theory does not include the case of exponentially bounded β-times inte-
grated semigroups. Consequently, the results obtained in [4, Chapters 2 and
3] cannot be applied to deal with the following problem in Lp(Ω) (if g 6= 0)
which is the fractional order version of Problem (1.1):

Dαt u(t, x) = Au(t, x) + f(t, x), t > 0, x ∈ Ω, 0 < α < 1,
∂u(t, z)

∂νA
+ γ(z)u(t, z) = g(t, z), t > 0, z ∈ ∂Ω,

u(0, x) = u0(x), x ∈ Ω.

(1.3)

Here, Ω ⊂ RN is an open set with boundary ∂Ω, A is a uniformly elliptic
operator with bounded measurable coefficients formally given by

Au =
N∑
j=1

Dj

( N∑
i=1

ai,jDiu+ bju
)
−
( N∑
i=1

ciDiu+ du
)

(1.4)

and

∂u

∂νA
=

N∑
j=1

( N∑
i=1

aijDiu+ bju
)
· νj ,
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where ν denotes the unit outer normal vector of Ω at ∂Ω and γ is a nonneg-
ative measurable function in L∞(∂Ω).

In this paper, we introduce an appropriate operator family in a general
Banach space associated with Problem (1.2) that will cover all the above

mentioned cases. This family will be called (α, 1)β-resolvent family (Sβα(t))
(see Definition 4.2 below) where 0 < α ≤ 1 and β ≥ 0 is a real parameter as-
sociated with the operator A. The case β = 0 and α = 1 corresponds to the
heat equation with A generating a semigroup. The family S0

α (0 < α ≤ 1)
corresponds to the family Sα introduced in the reference [4] and mentioned

above (see also [20, 21] for related results). The family Sβα (β > 0) and α = 1
corresponds to the theory of exponentially bounded β-times integrated semi-
groups and is well-understood (see the monograph [2, Section 3.2] and its
bibliography). We use this framework to treat the homogeneous (f = 0 in
(1.2)) as well as the inhomogeneous problems (under appropriate conditions
on f in (1.2)). Some related work appears in the reference [11] where however

the operator family Sβα and its analytical and operator theoretic properties
are not considered. We shall in fact consider the case where the operator A
is a Lp-realization of a more general uniformly elliptic operator in divergence
form (as the one in (1.4)) with various boundary conditions (Dirichlet, Neu-
mann or Robin). We obtain a representation of mild and classical solutions

in terms of the operator family Sβα. Our results apply to the situation where
the closed linear operator A satisfies the following condition: There exist
ω ≥ 0 and γ ≥ −1 such that

‖(λ−A)−1‖ ≤M |λ|γ , Re(λ) > ω. (1.5)

In particular, this includes the case of almost sectorial operators (in which
−1 < γ < 0) studied in [40] using a certain functional calculus. In fact,
several operators of interest (as the one involved in the non-homogeneous
boundary conditions in Problem (1.3) or the Schrödinger operator i∆p on
Lp(RN ), p 6= 2) which do not generate strongly continuous semigroups are
generators of integrated semigroups. Operators of this type have been used
in [26, 27] in the study of age structured population models in the Lp-context.
More examples will be presented in Section 8 below.

The paper is organized as follows. In Section 2, we present some prelim-
inaries on fractional derivatives, the Wright type functions and the Mittag-
Leffler functions. In Section 3 we use the Laplace transform to motivate the
introduction of the operator family which will be used in the sequel. Section
4 is devoted to the definition and several properties of the resolvent family

Sβα. In the short Section 5 we characterize the resolvent family Sβα through
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the regularized fractional Cauchy problem. The homogeneous (fractional)
abstract Cauchy problem is solved in Section 6. The conditions on the ini-
tial data that ensure solvability of the problem agree with the classical case
α = 1. We take up the inhomogeneous (fractional) abstract Cauchy prob-
lem in Section 7. We are able to deal satisfactory with this problem under
natural conditions on the initial data and the inhomogeneity. In the case of
generators of integrated semigroups relating to the case α = 1, the inhomo-
geneous problem is studied in [2, Section 3.2]; our results agree with this. In
fact, we are able to deal with the full range 0 < α ≤ 1. In the final Section
8 we present various examples of problems where the results of the previous
sections apply.

2. Preliminaries

The algebra of bounded linear operators on a Banach space X will be
denoted by L(X), the resolvent set of a linear operator A by ρ(A). We

denote by gα the function gα(t) := tα−1

Γ(α) , t > 0, α > 0, where Γ is the usual

gamma function. It will be convenient to write g0 := δ0, the Dirac measure
concentrated at 0. Note the semigroup property:

gα+β = gα ∗ gβ, α, β ≥ 0. (2.1)

The Riemann-Liouville fractional integral of order α > 0, of a locally
integrable function u : [0,∞)→ X is given by:

Iαt u(t) := (gα ∗ u)(t) :=

∫ t

0
gα(t− s)u(s)ds.

The Caputo fractional derivative of order α > 0 of a function u is defined by

Dαt u(t) := Im−αt u(m)(t) =

∫ t

0
gm−α(t− s)u(m)(s)ds, (2.2)

where m := dαe is the smallest integer greatest than or equal to α, u(m) is
the mth-order distributional derivative of u(·), for example if we assume that
u(·) has locally integrable distributional derivatives up to order m. Then,

when α = n is a natural number, we obtain Dnt :=
dn

dtn
. In relation to the

Riemann-Liouville fractional derivative of order α, namely Dα
t , we have:

Dαt f(t) = Dα
t

(
f(t)−

m−1∑
k=0

f (k)(0)gk+1(t)
)
, t > 0, (2.3)
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where m := dαe has been defined above, and for a locally integrable function
u : [0,∞)→ X,

Dα
t u(t) :=

dm

dtm

∫ t

0
gm−α(t− s)u(s) ds, t > 0.

The Laplace transform of a locally integrable function f : [0,∞)→ X is
defined by

L(f)(λ) := f̂(λ) :=

∫ ∞
0

e−λtf(t)dt = lim
R→∞

∫ R

0
e−λtf(t)dt,

provided the integral converges for some λ ∈ C. If for example f is ex-
ponentially bounded, that is, there exist M > 0 and ω ∈ R such that
‖f(t)‖ ≤ Meωt, t ≥ 0, then the integral converges absolutely for Re(λ) > ω
and defines an analytic function there. The most general existence theo-
rem for the Laplace transform in the vector-valued setting is given by [2,
Theorem 1.4.3].

Regarding the fractional derivative, we have for α > 0 and m := dαe, the
following important properties:

D̂αt f(λ) = λαf̂(λ)−
m−1∑
k=0

λα−k−1f (k)(0), (2.4)

and

D̂α
t f(λ) = λαf̂(λ)−

m−1∑
k=0

λm−k−1(
dk

dtk
Im−αt f)(0). (2.5)

The power function λα is uniquely defined as λα = |λ|αeiarg(λ), with −π <
arg(λ) < π.

Next, we recall some useful properties of convolutions that will be fre-
quently used throughout the paper. For every f ∈ C([0,∞);X), k ∈ N and
α ≥ 0, we have that for every t ≥ 0,

dk

dtk
[(gk+α ∗ f)(t)] = (gα ∗ f)(t). (2.6)

If f ∈ C1([0,∞);X), then for every α > 0, we have that for every t ≥ 0,

d

dt
[(gα ∗ f)(t)] = gα(t)f(0) + (gα ∗ f ′)(t). (2.7)
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Let k ∈ N. If u ∈ Ck−1([0,∞);X) and v ∈ Ck([0,∞);X), then for every
t ≥ 0,

dk

dtk
[(u ∗ v)(t)] =

k−1∑
j=0

u(k−1−j)(t)v(j)(0) + (u ∗ v(k))(t)

=

k−1∑
j=0

dk−1

dtk−1

[
(gj ∗ u)(t)v(j)(0)

]
+ (u ∗ v(k))(t). (2.8)

The Mittag-Leffler function (see e.g. [16, 17, 35, 38]) is defined as follows:

Eα,β(z) :=
∞∑
n=0

zn

Γ(αn+ β)
, α > 0, β ∈ C, z ∈ C. (2.9)

By [35, Formula (1.135)] if 0 < α < 2, N ∈ N \ {1} and µ is a real number
such that

απ

2
< µ < min{π, απ},

then Eα,β has the following asymptotic expansion:

Eα,β(z) =
1

α
z

1−β
α ez

1
α −

N∑
j=1

1

Γ(β − αj)
1

zj
+O

[ 1

zN+1

]
(2.10)

as |z| → ∞, |arg(z)| ≤ µ and

Eα,β(z) = −
N∑
j=1

1

Γ(β − αj)
1

zj
+O

[ 1

zN+1

]
(2.11)

as |z| → ∞ and µ ≤ |arg(z)| ≤ π. The following Laplace transform formula
related to the Mittag-Leffler function (see e.g. [35, Formula (180), page 21])
will be useful:∫ ∞

0
e−λttαk+β−1E

(k)
α,β(±ωtα)dt =

k!λα−β

(λα ∓ ω)k+1
, Re(λ) > |ω|1/α. (2.12)

Using this formula, we obtain for 0 < α < 1 :

Dαt Eα,1(ztα) = zEα,1(ztα), t > 0, z ∈ C, (2.13)

and the identity
d

dt
Eα,1(ztα) = ztα−1Eα,α(ztα).

To see the latter, it is sufficient to write

L
(
tα−1Eα,α(ztα)

)
(λ) =

1

λα − z
=

1

z

[
λ
λα−1

λα − z
− 1
]
,
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and invert the Laplace transform. It follows from (2.13) that for every z ∈ C,
the function u(t) := Eα,1(ztα) is the solution of the scalar valued problem

Dαt u(t) = zu(t), t > 0,

satisfying u(0) = 1. Letting v(t) := tα−1Eα,α(ztα)x, t > 0, x ∈ X and using
the Laplace transform, it is easy to see that

v(t) = gα(t)x+ z(gα ∗ v)(t). (2.14)

It follows from (2.10) and (2.11) (see also [4, Formula (2.9)]), that if ω ≥ 0
is a real number, then there exist some constants C1, C2 ≥ 0 such that

Eα,1(ωtα) ≤ C1e
tω

1
α , and Eα,α(ωtα) ≤ C2e

tω
1
α , t ≥ 0, α ∈ (0, 2), (2.15)

and the estimates in (2.15) are sharp. Recall the definition of the Wright
type function [17, Formula (28)] (see also [35, 38, 42]):

Φα(z) :=

∞∑
n=0

(−z)n

n!Γ(−αn+ 1− α)
, (2.16)

0 < α < 1. This has sometimes also been called the Mainardi function. By
[4, p.14] or [17], Φα(t) is a probability density function, that is,

Φα(t) ≥ 0, t > 0 and

∫ ∞
0

Φα(t)dt = 1,

and its Laplace transform is the Mittag-Leffler function in the whole complex
plane. We also have Φα(0) = 1

Γ(1−α) , and as t→ +∞, Φα has the following

asymptotic expansion

Φα(t) = Y α−1/2e−Y
(M−1∑
m=0

AmY
−m +O(Y −M )

)
, 0 < α < 1, (2.17)

for any M ∈ N, with Y = (1 − α)(ααt)1/(1−α), where Am are real numbers
(see e.g. [17, Theorems 2.1.1, 2.1.3 and 2.1.4] and [42])

Concerning the Laplace transform of the Wright type functions, the fol-
lowing identities hold:

e−λ
αs = L

(
α

s

tα+1
Φα(st−α)

)
(λ), 0 < α < 1, (2.18)

and

λα−1e−λ
αs = L

( 1

tα
Φα(st−α)

)
(λ), 0 < α < 1. (2.19)
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See [17, Formulas (40) and (42)] and [4, Formula (3.10)]. We notice that
(2.18) was formerly first given by Pollard and Mikusinski (see [36, 17] and
references therein).

The following formula on the moments of the Wright function will be
useful: ∫ ∞

0
xpΦα(x)dx =

Γ(p+ 1)

Γ(αp+ 1)
, p > 0, 0 < α < 1. (2.20)

The preceding formula (2.20) is derived from the representation (2.16) and
can be found in [17, formula after (38)]. Note that in this reference the
notation M(x, α) := Φα(x) is used. For more details on the Wright type
functions, we refer to the papers [4, 17, 28, 42] and the references therein.
We note that the Wright functions have been used by Bochner to construct
fractional powers of semigroup generators (see e.g. [43, Chapter IX]).

3. Motivations

In this section we discuss heuristically the solvability of the fractional order
Cauchy problem (1.2). We proceed through the use of the Laplace transform
and derive some representation formulas that will serve as motivation for the
theoretical framework of the subsequent sections.

We assume that 0 < α < 1. In view of (2.3), we may rewrite (1.2) as:

u(t) = A(gα ∗ u)(t) + (gα ∗ f)(t) + u(0), t > 0. (3.1)

Suppose that u is exponentially bounded, e.g. ‖u(t)‖ ≤ Meωt (ω ∈ R
and M ≥ 0) or more generally ‖(g1 ∗ u)(t)‖ ≤ Meωt, and satisfies (1.2).
If (g1 ∗ f)(t) is also exponentially bounded, then we can take the Laplace
transform on both sides of (3.1), and this yields for Re(λ) > ω,

(λα −A)û(λ) = f̂(λ) + λα−1u(0). (3.2)

The above relation (3.2) can be rewritten as:

û(λ) = (λα −A)−1f̂(λ) + λα−1(λα −A)−1u(0), (3.3)

provided that {λα : Re(λ) > ω} ⊆ ρ(A).
If we now assume that the operator A generates an exponentially bounded

β-times integrated semigroup (Tβ(t)) on X for some β ≥ 0, then there exist
some constants ω,M ≥ 0 such that ‖Tβ(t)x‖ ≤ Meωt‖x‖, x ∈ X, t > 0,
{λ ∈ C : Re(λ) > ω} ⊂ ρ(A) and

(λ−A)−1x = λβ
∫ ∞

0
e−λtTβ(t)xdt, Re(λ) > ω, x ∈ X. (3.4)
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Then {λα : Re(λ) > ω} ⊂ ρ(A) and we get from (3.4) that,

(λα −A)−1x = λαβ
∫ ∞

0
e−λ

αtTβ(t)xdt, Re(λ) > ω, x ∈ X. (3.5)

Substituting (3.5) into (3.3), we get that for Re(λ) > ω,

û(λ) = λαβ
∫ ∞

0
e−λ

αtTβ(t)f̂(λ) dt+ λαβλα−1

∫ ∞
0

e−λ
αtTβ(t)u(0) dt. (3.6)

Using (2.18) we get from (3.6) and Fubini’s theorem that for Re(λ) > ω,

û(λ) =λαβ
∫ ∞

0
α

∫ ∞
0

e−λs
t

sα+1
Φα(ts−α)Tβ(t)f̂(λ)dtds

+ λα−1λαβ
∫ ∞

0
α

∫ ∞
0

e−λs
t

sα+1
Φα(ts−α)Tβ(t)u(0)dtds

=λαβ
∫ ∞

0
e−λs

∫ ∞
0

αt

sα+1
Φα(ts−α)Tβ(t)f̂(λ)dsdt

+ λαβ ĝ1−α(λ)

∫ ∞
0

e−λs
∫ ∞

0

αt

sα+1
Φα(ts−α)Tβ(t)u(0)dtds. (3.7)

Setting

T βα (t)x :=

∫ ∞
0

αs

tα+1
Φα(st−α)Tβ(s)xds and T̃ βα (t)x := (g1−α ∗ T βα )(t)x

t > 0, x ∈ X, we get from (3.7) that, for Re(λ) > ω,

û(λ) = λαβT̂ βα (λ)u(0) + λαβ
̂̃
T βα ∗ f(λ).

The above identity shows that we can find a solution u(t) of (1.2) whenever
we can prove the existence of an operator family whose Laplace transform

coincides with λαβT̂ βα (λ).

4. Resolvent families and their properties

The following two definitions are motivated by the discussion in the pre-
vious Section 3. They are an extension of the one considered in [1] and [4],
respectively.

Definition 4.1. Let A be a closed linear operator with domain D(A) defined
on a Banach space X and let 0 < α ≤ 1, β ≥ 0. We say that A is the
generator of an (α, α)β-resolvent family if there exists a strongly continuous

function P βα : [0,∞) → L(X) (resp. P βα : (0,∞) → L(X) in case 0 <
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α(β + 1) < 1) such that, ‖(g1 ∗ P βα )(t)‖ ≤ Meωt, t > 0, for some constants
M,ω ≥ 0, {λα : Re(λ) > ω} ⊂ ρ(A), and

(λα −A)−1x = λαβ
∫ ∞

0
e−λtP βα (t)xdt, Re(λ) > ω, x ∈ X.

In this case, P βα is called the (α, α)β-resolvent family generated by A.

Definition 4.2. Let A be a closed linear operator with domain D(A) defined
on a Banach space X and let 0 < α ≤ 1, β ≥ 0. We call A the generator
of an (α, 1)β-resolvent family if there exists a strongly continuous function

Sβα : [0,∞) → L(X) such that, ‖(g1 ∗ Sβα)(t)‖ ≤ Meωt, t ≥ 0, for some
constants M,ω ≥ 0, {λα : Re(λ) > ω} ⊂ ρ(A), and

λα−1(λα −A)−1x = λαβ
∫ ∞

0
e−λtSβα(t)xdt, Re(λ) > ω, x ∈ X.

In this case, Sβα is called the (α, 1)β-resolvent family generated by A.

We will say that P βα (resp. Sβα) is exponentially bounded if there exist

some constants M,ω ≥ 0 such that ‖P βα (t)‖ ≤ Meωt, ∀ t > 0, (resp.

‖Sβα(t)‖ ≤Meωt, ∀ t ≥ 0).
It follows from the uniqueness theorem for the Laplace transform that an

operator A can generate at most one (α, 1)β (resp. (α, α)β)-resolvent family
for given parameters 0 < α ≤ 1 and β ≥ 0.

We shall write (α, 1) and (α, α) for (α, 1)0 and (α, α)0, respectively.
Before we give some properties of the resolvent families defined above, we

need the following preliminary result.

Lemma 4.3. Let f : [0,∞) → X be such that there exist some constants
M ≥ 0 and ω ≥ 0 such that ‖(g1 ∗ f)(t)‖ ≤ Meωt, t > 0. Then for every
α ≥ 1, there exist some constants M1 ≥ 0 and ω1 ≥ 0 such that ‖(gα ∗
f)(t)‖ ≤M1e

ω1t, t > 0.

Proof. Assume that f satisfies the hypothesis of the lemma and let α ≥ 1.
We just have to consider the case α > 1. Then for every t > 0,

‖(gα ∗ f)(t)‖ = ‖(gα−1 ∗ g1 ∗ f)(t)‖ ≤
∫ t

0
gα−1(s)Meω(t−s) ds

= Meωt
∫ t

0

sα−2

Γ(α− 1)
e−ωs ds ≤Meωt

tα−1

Γ(α)
≤M1e

ω1t,

for some constants M1, ω1 ≥ 0 and the proof is finished. �
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Remark 4.4. Let A be a closed linear operator with domain D(A) defined
on a Banach space X and let 0 < α ≤ 1, β ≥ 0.

(a) Using Lemma 4.3, we have that if A generates an (α, α)β-resolvent

family P βα , then it generates an (α, 1)β-resolvent family Sβα given by

Sβα(t)x = (g1−α ∗ P βα )(t)x, t ≥ 0, x ∈ X. (4.1)

(b) By the uniqueness theorem for the Laplace transform, a (1, 1)-resolvent
family is the same as a C0-semigroup, a (1, 1)β-resolvent family is the same
as an exponentially bounded β−times integrated semigroup. We refer to the
monograph [2] (especially Chapter 3 and Chapter 6) and the corresponding
references for a study of the concept of integrated semigroups. Integrated
semigroups have been applied systematically to the study of age-dependent
population models in the papers [26, 27] by Magal and Ruan, and [39] by
Thieme. A detailed study of the fractional Cauchy problem is carried out in
[4, 5] for the case β = 0 (see also [40] for the situation with almost sectorial
operators).

Some properties of (P βα (t)) and (Sβα(t)) are included in the following
lemmas. Their proof uses techniques from the general theory of (a, k)-
regularized resolvent families [24] (see also [1, 4, 25]). It will be of crucial use
in the investigation of solutions of fractional order Cauchy problems in Sec-
tions 5, 6, and 7. The proof of the analogous results in the case of strongly
continuous semigroups may be found in [2, Chapter 3]. The case β = 0 is
included in [21]. For the sake of completeness we include the full proof.

Lemma 4.5. Let A be a closed linear operator with domain D(A) defined
on a Banach space X. Let 0 < α ≤ 1, β ≥ 0 and assume that A generates

an (α, 1)β-resolvent family Sβα. Then the following properties hold:

(a) Sβα(t)D(A) ⊂ D(A) and ASβα(t)x = Sβα(t)Ax for all x ∈ D(A), t ≥ 0.

(b) For all x ∈ D(A), Sβα(t)x = gαβ+1(t)x+

∫ t

0
gα(t−s)ASβα(s)xds, t ≥ 0.

(c) For all x ∈ X, (gα ∗ Sβα)(t)x ∈ D(A) and

Sβα(t)x = gαβ+1(t)x+A

∫ t

0
gα(t− s)Sβα(s)xds, t ≥ 0.

(d) Sβα(0) = gαβ+1(0). Thus, Sβα(0) = I if β = 0 and Sβα(0) = 0 if β > 0.

Proof. Let ω be as in Definition 4.2. Let λ, µ > ω and x ∈ D(A). Then
x = (I − µ−αA)−1y for some y ∈ X. Since (I − µ−αA)−1 and (I − λ−αA)−1

are bounded and commute, and given that the operator A is closed, we
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obtain from the definition of Sβα that,

Ŝβα(λ)x =

∫ ∞
0

e−λtSβα(t)x dt = Ŝβα(λ)(I − µ−αA)−1y

= (I − µ−αA)−1λ−αβλα−1(λα −A)−1y = (I − µ−αA)−1Ŝβα(λ)y

=

∫ ∞
0

e−λt(I − µ−αA)−1Sβα(t)y dt.

By the uniqueness theorem for the Laplace transform and by continuity, we
get that

Sβα(t)x = (I − µ−αA)−1Sβα(t)y = (I − µ−αA)−1Sβα(t)(I − µ−αA)x, (4.2)

∀ t ≥ 0. It follows from (4.2) that Sβα(t)x ∈ D(A). Hence, Sβα(t)D(A) ⊂
D(A) for every t ≥ 0. It follows also from (4.2) that ASβα(t)x = Sβα(t)Ax for
all x ∈ D(A) and t ≥ 0 and we have shown the assertion (a).

Let x ∈ D(A). Using the convolution theorem, we get that∫ ∞
0

e−λtgαβ+1(t)x dt = λ−αβ−1x = λ−αβλα−1(λα −A)−1(I − λ−αA)x

= Ŝβα(λ)(I − λ−αA)x = Ŝβα(λ)x− λ−αŜβα(λ)Ax

=

∫ ∞
0

e−λt
[
Sβα(t)x−

∫ t

0
gα(t− s)Sβα(s)Ax ds

]
.

By the uniqueness theorem for the Laplace transform we obtain part (b).
Next, let λ ∈ ρ(A) be fixed, x ∈ X and set y := (λ − A)−1x ∈ D(A).

Let z := (gα ∗ Sβα)(t)x, t ≥ 0. We have to show that z ∈ D(A) and Az =

Sβα(t)x− gαβ+1(t)x. Using part (b) we obtain that

z = (λ−A)(gα ∗ Sβα)(t)y = λ(gα ∗ Sβα)(t)y −A(gα ∗ Sβα)(t)y

= λ(gα ∗ Sβα)(t)y − (Sβα(t)y − gαβ+1(t)y) ∈ D(A).

Therefore,

Az = λA(gα ∗ Sβα)(t)y −ASβα(t)y + gαβ+1(t)Ay

= λ
[
(gα ∗ASβα)(t)y − Sβα(t)y + gαβ+1(t)y

]
+ Sβα(t)x− gαβ+1(t)x

= Sβα(t)x− gαβ+1(t)x,

and we have shown part (c).
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Finally, it follows from the strong continuity of Sβα(t) on [0,∞) and from

the assertion (c) that Sβα(0)x = gαβ+1(0)x for every x ∈ X. This implies all
the properties in (d) and the proof is finished. �

The corresponding result for the family P βα is given in the following lemma.
Its proof runs similar to the proof of Lemma 4.5.

Lemma 4.6. Let A be a closed linear operator with domain D(A) defined
on a Banach space X. Let 0 < α ≤ 1, β ≥ 0 and assume that A generates

an (α, α)β-resolvent family P βα . Then the following properties hold.

(a) P βα (t)D(A) ⊂ D(A) and AP βα (t)x = P βα (t)Ax for all x ∈ D(A), t > 0.

(b) For all x ∈ D(A), P βα (t)x = gα(β+1)(t)x+

∫ t

0
gα(t−s)AP βα (s)xds, t >

0.
(c) For all x ∈ X, (gα ∗ P βα )(t)x ∈ D(A) and P βα (t)x = gα(β+1)(t)x +

A

∫ t

0
gα(t− s)P βα (s)xds, t > 0.

(d) If β > 0, then for every x ∈ D(A), we have

1

Γ(α(β + 1))
lim
t→0

t1−α(β+1)P βα (t)x = x

if α(β + 1) < 1, P βα (0)x = x if α(β + 1) = 1 and P βα (0)x = 0 if
α(β + 1) > 1.

If α(β + 1) ≥ 1, then all the above equalities hold for all t ≥ 0.

Proof. Let just give a short justification of the assertion (d). If x ∈ D(A),
then all the properties in (d) follow from (b). We obtain the assertion (d)

for every x ∈ D(A) by density of D(A) in D(A). �

We notice that it follows from Lemma 4.6 (d) that P βα (t) exhibits a singular

behavior at the origin if α(β + 1) < 1. In any case, t 7→ ‖P βα (t)x‖ is in
L1
loc[0,∞) for every x ∈ X.

Remark 4.7. Let A be a closed linear operator with domain D(A) defined
on a Banach space X. Let 0 < α ≤ 1 and β ≥ 0.

(a) If A generates an (α, 1)0 = (α, 1)-resolvent family Sα, then it follows
from Lemma 4.5 (c) that D(A) is necessary dense in X. In that case, if A
also generates an (α, α)0 = (α, α)-resolvent family Pα, then all the properties
in Lemma 4.6 (d) hold for every x ∈ X.

(b) We notice that if A generates an (α, 1)β-resolvent family Sβα and D(A)
is dense in X then this does not necessary imply that β = 0 (see Section 8).
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(c) The examples presented below in Corollary 4.14 and in Section 8 show
that in general (β > 0) the domain of A is not necessary dense in X.

(d) An operator family S(t), t > 0, is called non-degenerate if for x ∈ X
the property S(t)x = 0 for all t ∈ (0, τ ] (where τ ∈ (0,∞]) implies that x = 0.

The (α, 1)β and (α, α)β-resolvent families Sβα and P βα are non-degenerate.
This is a direct consequence of Lemma 4.5(c) and Lemma 4.6(c).

The following result shows some regularity properties of the family Sβα in

case A generates a family P βα .

Lemma 4.8. Let A be a closed linear operator on a Banach space X and let

0 < α ≤ 1, β ≥ 0. Assume that A generates an (α, α)β-resolvent family P βα
and an (α, 1)β-resolvent family Sβα. Then for every x ∈ D(A) the mapping

t 7→ Sβα(t)x is differentiable on (0,∞) and

(Sβα)′(t)x = gαβ(t)x+ P βα (t)Ax, t > 0. (4.3)

Proof. Let x ∈ D(A). Then it is clear that the right-hand side of (4.3)
belongs to C((0,∞),L(X)). Applying the Laplace transform to both sides

of (4.3) and using the fact that Sβα(0) = 0, we have that for Re(λ) > ω

(where ω is the real number from the definition of Sβα and P βα ),

(̂Sβα)′(λ)(x) = λŜβα(λ)(x) = λλ−αβλα−1(λα −A)−1x = λ−αβλα(λα −A)−1x.

On the other hand we have that for Re(λ) > ω,

ĝαβ(λ)x+ P̂ βα (λ)Ax = λ−αβx+ λ−αβ(λα −A)−1Ax

= λ−αβx− λ−αβx+ λ−αβλα(λα −A)−1x = λ−αβλα(λα −A)−1x.

By the uniqueness theorem for the Laplace transform and continuity of the
right-hand side of (4.3), we conclude that the identity (4.3) holds. �

The following result presents the extrapolation property of the families

Sβα and P βα in terms of the parameter β.

Proposition 4.9. Let A be a closed linear operator on a Banach space X
and let 0 < α ≤ 1, β ≥ 0. Then the following assertions hold.

(a) If A generates an (α, α)β-resolvent family P βα , then it generates an

(α, α)β
′
-resolvent family P β

′
α for every β′ ≥ β and

P β
′

α (t)x = (gα(β′−β) ∗ P βα )(t)x, ∀ t > 0, x ∈ X. (4.4)
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(b) If A generates an (α, 1)β-resolvent family Sβα, then it generates an

(α, 1)β
′
-resolvent family Sβ

′
α for every β′ ≥ β and

Sβ
′

α (t)x = (gα(β′−β) ∗ Sβα)(t)x, ∀ t ≥ 0, x ∈ X. (4.5)

Proof. Let A be a closed linear operator on X, 0 < α ≤ 1 and β ≥ 0.

(a) Assume that A generates an (α, α)β-resolvent family P βα . Then, by
definition, there exists ω ≥ 0 such that {λα : Re(λ) > ω} ⊂ ρ(A) and

(λα −A)−1x = λαβ
∫ ∞

0
e−λtP βα (t)xdt, Re(λ) > ω, x ∈ X. (4.6)

Let β′ ≥ β and let P β
′

α be given by the right hand side in (4.4). Then using
Lemma 4.6(c) we have that for every x ∈ X and t > 0,

P β
′

α (t)x : = (gα(β′−β) ∗ P βα )(t)x

= gα(β′+1)(t)x+A
(
gα(β′−β+1) ∗ P βα

)
(t)x.

Hence, P β
′

α is strongly continuous from [0,∞) into L(X) if α(β′ + 1) ≥ 1
and from (0,∞) into L(X) if 0 < α(β′ + 1) < 1. By (4.4), we have that for
every x ∈ X and t > 0,

(g1 ∗ P β
′

α )(t)x = (gα(β′−β)+1 ∗ P βα )(t)x,

and since by hypothesis ‖(g1 ∗ P βα )(t)x‖ ≤ Meωt‖x‖ for some constants
M,ω ≥ 0, it follows from Lemma 4.3 that there exist some constantsM ′, ω′ ≥
0 such that ‖(g1 ∗ P β

′
α )(t)x‖ ≤ M ′eω

′t‖x‖. Next, using (4.6), we have that
for Re(λ) > ω, x ∈ X and β′ ≥ β,

(λα −A)−1x = λαβ
∫ ∞

0
e−λtP βα (t)xdt = λαβ

′
λα(β−β′)

∫ ∞
0

e−λtP βα (t)xdt

= λαβ
′
∫ ∞

0
e−λt(gα(β−β′) ∗ P βα )(t)xdt.

Hence, A generates an (α, α)β
′
-resolvent family P β

′
α given by (4.4) and we

have shown (a).
(b) The proof of this part follows the lines of the proof of part (a) where

now we use Lemma 4.5. �

The following example shows that a generation of an (α, 1)β or (α, α)β-
resolvent family does not imply a generation of an (α′, 1)β or (α′, α′)β-
resolvent family for 0 < α < α′ ≤ 1. That is, in general, an extrapolation
property in terms of the parameter α does not always hold.
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Example 4.10. Let 1 ≤ p < ∞ and ∆p a realization of the Laplacian in
Lp(RN ). It is well-known that ∆p generates an analytic C0-semigroup of
contractions. Hence, for every ε > 0, there exists a constant C > 0 such
that

‖(λ−∆p)
−1‖ ≤ C

|λ|
, λ ∈ Σπ−ε, (4.7)

where for 0 < γ < π, Σγ := {z ∈ C : 0 < |arg(z)| < γ}. Let 0 < α < 1,

θ ∈ [0, π) and let the operator Ap on Lp(RN ) be given by Ap := eiθ∆p. It

follows from (4.7) that for λe−iθ ∈ Σπ−ε,

‖(λ−Ap)−1‖ = ‖(λ− eiθ∆p)
−1‖ = ‖(λe−iθ −∆p)

−1‖ ≤ C

|λ|
.

Therefore, if π
2 < θ <

(
1− α

2

)
π, then ρ(Ap) ⊃ Σαπ and

‖(λ−Ap)−1‖ ≤ C

|λ|
, λ ∈ Σαπ. (4.8)

By [4, Corollary 2.16] or [6, Proposition 3.1], the estimate (4.8) implies that
Ap generates an (α, 1)-resolvent family on Lp(RN ). Hence, by Proposition

4.9(b), Ap generates an (α, 1)β-resolvent family on Lp(RN ) for any β ≥ 0.
Such problems are also treated in [5]. Moreover, the technique for con-
structing the solution operators through a contour integral representation is
adapted in the recent paper [40] to handle the case of almost sectorial op-
erators. But if 0 < α < 1

2 , by inspecting the location of the spectrum of Ap
we see that Ap does not generate an exponentially bounded (1, 1)β-resolvent
family, that is a β-times integrated semigroup on Lp(RN ), for any β ≥ 0.

Remark 4.11. In view of the asymptotic expansion (2.17) of the Wright
function (see [17, Theorems 2.1.1, 2.1.3 and 2.1.4] and [42]), for a locally
integrable function f : [0,∞) → X which is exponentially bounded at in-
finity, and for any 0 < σ < 1, the integral

∫∞
0 Φσ(τ)f(τ) dτ converges. This

property will be frequently used in the following without further mention.

Concerning subordination of resolvent families we have the following pre-
liminary result.

Lemma 4.12. Let A be a closed linear operator on a Banach space X. Let
0 < α ≤ 1, β ≥ 0. Then the following assertions hold.

(a) Assume that A generates an (α, α)β-resolvent family P βα . Let 0 <

α′ < α, σ := α′

α and set

P (t)x := σtσ−1

∫ ∞
0

sΦσ(s)P βα (stσ)xds, t > 0, x ∈ X. (4.9)
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Then (g1 ∗P )(t)x is exponentially bounded. Moreover, (g1 ∗P )(t)x =
P(t)x where

P(t)x :=

∫ ∞
0

σs

tσ+1
Φσ(st−σ)(g 1

σ
∗ P βα )(s)xds, t > 0, x ∈ X. (4.10)

(b) Assume that A generates an (α, 1)β-resolvent family Sβα. Let 0 <

α′ < α, σ := α′

α and set

S(t)x :=

∫ ∞
0

1

tσ
Φα(st−σ)(g 1

σ
∗ Sβα)(s)xds, t > 0, x ∈ X. (4.11)

Then S is exponentially bounded. Moreover, S(t)x = (g1 ∗ S)(t)x
where

S(t)x =

∫ ∞
0

Φσ(s)Sβα(stσ)x ds, ∀ t ≥ 0, x ∈ X. (4.12)

Proof. Let A, α and β be as in the statement of the lemma.

(a) Assume that A generates an (α, α)β-resolvent family P βα and let 0 <

α′ < α, σ := α′

α and x ∈ X. Let P (t) be given by (4.9). By hypothesis, there

exist M,ω ≥ 0 such that ‖(g1 ∗ P βα )(t)x‖ ≤ Meωt‖x‖ for every x ∈ X. We
show that there exist some constants M1, ω1 ≥ 0 such that for every x ∈ X,
‖(g1 ∗ P )(t)x‖ ≤ M1e

ω1t‖x‖, t ≥ 0. Using (4.9), Fubini’s theorem, (2.20),
(2.9) and (2.15), we get that for every t ≥ 0, after a change of variable,∥∥∥∫ t

0
P (τ)x dτ

∥∥∥ ≤ ∫ ∞
0

Φσ(s)
∥∥∥∫ stσ

0
P βα (τ)x dτ

∥∥∥ ds
≤M‖x‖

∫ ∞
0

Φσ(s)eωst
σ
ds = M‖x‖

∞∑
n=0

(ωtσ)n

n!

∫ ∞
0

Φσ(s)sn ds

≤M‖x‖
∞∑
n=0

(ωtσ)n

n!

Γ(n+ 1)

Γ(σn+ 1)
=≤M1e

tω
1
σ ‖x‖,

for some constant M1 ≥ 0, proving the claim. Taking the Laplace transform
by using (2.18) and Fubini’s theorem, we have that for Re > ω and x ∈ X,∫ ∞

0
e−λtP(t)x dt =

∫ ∞
0

e−λt
∫ ∞

0

σs

tσ+1
Φσ(st−σ)(g 1

σ
∗ P βα )(s)xds dt

=

∫ ∞
0

e−λ
σs(g 1

σ
∗ P βα )(s)xds = λ−1λ−α

′β(λα
′ −A)−1x.
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Similarly, we have that for Re > ω and x ∈ X,∫ ∞
0

e−λt(g1 ∗ P )(t)x dt = λ−1

∫ ∞
0

e−λtP (t)x dt

= λ−1

∫ ∞
0

P βα (τ)x

∫ ∞
0

e−λt
στ

tσ+1
Φσ(τt−σ) dt dτ = λ−1

∫ ∞
0

e−τλ
σ
P βα (τ)x dτ

= λ−1λ−α
′β(λα

′ −A)−1x.

By the uniqueness theorem for the Laplace transform and by continuity, we
have that (g1 ∗ P )(t)x = P(t)x for all t > 0 and x ∈ X and this completes
the proof of part (a).

(b) Assume that A generates an (α, 1)β-resolvent family Sβα and let 0 <

α′ < α, σ := α′

α and x ∈ X. Then there exist M,ω ≥ 0 such that ‖(g1 ∗
Sβα)(t)x‖ ≤Meωt‖x‖, x ∈ X, t ≥ 0. Since 1

σ > 1, it follows from Lemma 4.3
that there exist some constants M1, ω1 ≥ 0 such that for every x ∈ X, t ≥ 0,

‖(g 1
σ
∗ Sβα)(t)x‖ ≤M1e

ω1t‖x‖. (4.13)

Using (4.11), (2.20), (4.13), (2.9), (2.15) ans proceeding as in part (a), we
have that

‖S(t)x‖ ≤M1‖x‖
∞∑
n=0

(ω1t
σ)n

Γ(σn+ 1)
= M1Eσ,1(ω1t

σ)‖x‖ ≤Metω
1
σ
1 ‖x‖,

for some constant M ≥ 0 and this completes the proof of the lemma. �

Next, we present the principle of subordination of the families Sβα and P βα
in terms of the parameter α.

Theorem 4.13. Let A be a closed linear operator on a Banach space X and
let 0 < α ≤ 1, β ≥ 0. Then the following assertions hold.

(a) If A generates an (α, α)β-resolvent family P βα , then it generates an

(α′, α′)β-resolvent family P βα′ for each 0 < α′ < α and for x ∈ X,

P βα′(t)x = σtσ−1

∫ ∞
0

sΦσ(s)P βα (stσ)x ds, ∀ t > 0, where σ :=
α′

α
. (4.14)

(b) If A generates an (α, 1)β-resolvent family Sβα, then it generates an

(α′, 1)β-resolvent family Sβα′ for each 0 < α′ < α and for every x ∈ X,

Sβα′(t)x =

∫ ∞
0

Φσ(s)Sβα(stσ)x ds, ∀ t ≥ 0, where σ :=
α′

α
. (4.15)
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Proof. Let A be a closed linear operator on a Banach space X and let
0 < α ≤ 1, β ≥ 0.

(a) Assume that A generates an (α, α)β-resolvent family P βα . Let 0 < α′ <

α and let P βα′ be given by (4.14). Then it is clear that P βα′ is strongly con-

tinuous from (0,∞) into L(X). We show that P βα′(t) is strongly continuous

at 0 if α′(β+ 1) ≥ 1. Since P βα (t) ' gα(β+1)(t) = 1
Γ(α(β+1) t

α(β+1)−1 as t→ 0,

we get from (4.14) that

P βα′(t) ' t
α′
α
−1t

α′
α
α(β+1)−α

′
α = tα

′(β+1)−1 as t→ 0.

We have shown that P βα′(t) is strongly continuous at 0 if α′(β + 1) ≥ 1. By

Lemma 4.12 there exist some constants M,ω ≥ 0 such that ‖(g1∗P βα′)(t)x‖ ≤
Meωt‖x‖ for every x ∈ X and t > 0. Now, it follows from (4.6) and (2.18)

that {λα′ : Re(λ) > ω} ⊂ ρ(A) and for Re(λ) > ω, x ∈ X,

(λα
′ −A)−1x = λα

′β

∫ ∞
0

e−λ
σtP βα (t)xdt

= λα
′β

∫ ∞
0

e−λtσtσ−1

∫ ∞
0

sΦσ(s)P βα (stσ)xds dt = λα
′β

∫ ∞
0

e−λtP βα′(t)x dt.

Hence, A generates an (α′, α′)β-resolvent family P β
′

α′ given by (4.14) and we
have shown part (a).

(b) Now assume that A generates an (α, 1)β-resolvent family Sβα. Then
by definition, there exists ω ≥ 0 such that {λα : Re(λ) > ω} ⊂ ρ(A) and

λα−1(λα −A)−1x = λαβ
∫ ∞

0
e−λtSβα(t)x dt, Re(λ) > ω, ∀ x ∈ X. (4.16)

Let 0 < α′ < α and let Sβα′ be given by (4.15). Then it is clear that Sβα′ is
strongly continuous from [0,∞) into L(X). By Lemma 4.12 there exist some

constants M,ω ≥ 0 such that ‖(g1 ∗ Sβα′)(t)x‖ ≤ Meωt‖x‖ for every x ∈ X
and t > 0. It follows from (4.16) and (2.19) that {λα′ : Re(λ) > ω} ⊂ ρ(A)
and for every x ∈ X and Re(λ) > ω,

λα
′−1(λα

′ −A)−1x = λα
′βλσ−1

∫ ∞
0

e−λ
σtSβα(t)xdt

= λα
′β

∫ ∞
0

e−λt
∫ ∞

0
Φσ(s)Sβα(stσ)xds dt = λα

′β

∫ ∞
0

e−λtSβα′(t)x dt.

Hence, A generates an (α′, 1)β-resolvent family Sβ
′

α′ given by (4.15). The
proof of the theorem is finished. �
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We have the following result as a direct consequence of Theorem 4.13.

Corollary 4.14. Let 0 < α ≤ 1, β ≥ 0 and let A be a closed linear operator
on a Banach space X. If A generates an exponentially bounded β−times
integrated semigroup (Tβ(t)), then A generates an (α, α)β-resolvent family

(P βα (t)) given by

P βα (t)x = α

∫ ∞
0

s

tα+1
Φα(st−α)Tβ(s)xds (4.17)

= α

∫ ∞
0

τ

t1−α
Φα(τ)Tβ(τtα)xdτ, t > 0, x ∈ X,

and is exponentially bounded away from 0.

Let (Sβα(t)) be the associated (α, 1)β-resolvent family generated by A which
exists by Remark 4.4 (a). Then

Sβα(t)x =

∫ ∞
0

t−αΦα(st−α)Tβ(s)xds =

∫ ∞
0

Φα(τ)Tβ(τtα)xdτ, (4.18)

t > 0, x ∈ X, and is exponentially bounded . In particular, it follows from

(4.17) and (4.18) that (P βα (t)) and (Sβα(t)) are analytic for t > 0.

Proof. We just have to show that P βα is exponentially bounded at ∞ and

that Sβα is exponentially bounded. By hypothesis, there exist some constants
M,ω ≥ 0 such that ‖Tβ(t)x‖ ≤ Meωt‖x‖ for every t > 0 and x ∈ X.
Therefore, using (4.18), (2.20), (2.9), (2.15) and using the same procedure
as in the proof of Lemma 4.12, we have that for every t > 0 and x ∈ X,

‖Sβα(t)x‖ ≤M1e
tω

1
α ‖x‖,

for some constant M1 ≥ 0 and we have shown that Sβα is exponentially
bounded. Now, let t0 > 0 be fixed. Similarly, using (4.18), (2.20), (2.9) and
(2.15), we have that for every t ≥ t0 and x ∈ X,

‖P βα (t)x‖ ≤M‖x‖ 1

t1−α
Eα,α(ωtα) ≤M1e

tω
1
α ‖x‖,

for some constant M1 ≥ 0. Hence, P βα is exponentially bounded at ∞ and
the proof is finished. �

Operators with polynomially bounded resolvent in a right-half plane gen-
erate integrated semigroups. Namely, if A satisfies (1.5), then A generates
an exponentially bounded integrated semigroup (see [2, Theorem 3.2.8] and
[31]).
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We notice that if β = 0, that is, A is the generator of a C0-semigroup,
then the representations (4.17) and (4.18) have been obtained in [4, 21].

Remark 4.15. We notice the following facts.
(a) As we have mentioned in Remark 4.7, in general, generators of inte-

grated semigroups are not densely defined [2, Remark 3.2.3, p.123]. We refer
to [2, Chapers 3 and 6] and [26, 27] for some examples.

(b) In general generators of resolvent families even in the case β = 0 are
not stable under bounded perturbations. In the case β = 0, an example
in [4, Example 2.24] shows that they need not be stable by perturbations
by scalar multiples of the identity (that is, cI where c ∈ C). Therefore
the resolvent families obtained through Corollary 4.14 are of special interest
since they are stable under the perturbations by multiple of the identities.
Other admissible perturbations have been studied, see e.g. [2, p.232], [18,
Theorems 3.1 and 3.3], [22] and the references therein.

We have the following result which can be viewed as an extension of
Lemma 4.12. It may also be of interest in its own right.

Lemma 4.16. Let A be a closed linear operator on a Banach space X. Let
0 < α ≤ 1, β ≥ 0 and µ > 0. Then the following assertions hold.

(a) Assume that A generates an (α, α)β-resolvent family P βα . Let 0 <

α′ < α ≤ 1, σ := α′

α and let P βα′ be the (α′, α′)β-resolvent family
generated by A. Then∫ ∞

0

σs

tσ+1
Φσ(st−σ)(gµ ∗ P βα )(s)xds = (gµσ ∗ P βα′)(t)x, t > 0, x ∈ X. (4.19)

(b) Assume that A generates an (α, 1)β-resolvent family Sβα. Let 0 <

α′ < α ≤ 1, σ := α′

α and let Sβα′ be the (α′, 1)β-resolvent family
generated by A. Then∫ ∞

0

1

tσ
Φα(st−σ)(gµ ∗ Sβα)(s)xds = (gµσ ∗ Sβα′)(t), t ≥ 0, x ∈ X. (4.20)

Proof. Let A, α, β be as in the statement of the lemma, x ∈ X and µ > 0.

(a) Assume that A generates an (α, α)β-resolvent family P βα . Let ω be the

real number from the definition of P βα . Let 0 < α′ < α. Taking the Laplace
transform, we have that for Re(λ) > ω and x ∈ X,

̂
(gµσ ∗ P βα′)(λ)x = λ−µσλ−α

′β(λα
′ −A)−1x = λ−µσ−α

′β(λα
′ −A)−1x. (4.21)
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On the other hand, using (2.18) and Fubini’s theorem, we obtain that for
Re(λ) > ω and x ∈ X,∫ ∞

0
e−λt

∫ ∞
0

σs

tσ+1
Φσ(st−σ)(gµ ∗ P βα )(s)xds dt =

∫ ∞
0

e−λ
σs(gµ ∗ P βα )(s)xds

= λ−σ(µ+αβ)(λασ −A)−1x = λ−σµ−α
′β(λα

′ −A)−1x. (4.22)

Using (4.21) and (4.22), the equality (4.19) follows from the uniqueness
theorem for the Laplace transform and by continuity.

(b) Similarly, for Re(λ) > ω and x ∈ X,

̂
(gσµ ∗ Sβα′)(λ)x = λ−σµ−α

′βλα
′−1(λα

′ −A)−1x. (4.23)

Using (2.19) and Fubini’s theorem, we obtain for Re(λ) > ω and x ∈ X,∫ ∞
0

e−λt
∫ ∞

0

1

tσ
Φα(st−σ)(gµ ∗ Sβα)(s)xds dt (4.24)

= λσ−1

∫ ∞
0

e−λ
σt(gαµ ∗ Sβα)(s)xds

= λσ−1λ−µσ−α
′β)λα

′−σ)(λα
′ −A)−1x = λ−σµ−α

′βλα
′−1(λα

′ −A)−1x.

Using (4.23) and (4.24), the equality (4.20) also follows from the uniqueness
theorem for the Laplace transform and by continuity. �

The following result on the regularity properties of Sβα is crucial and will
be used several times in the subsequent sections to obtain our main results.

Lemma 4.17. Let A be a closed linear operator with domain D(A) defined
on a Banach space X. Let 0 < α ≤ 1, β ≥ 0, k := dαβe, n := dβe and

assume that A generates an (α, 1)β-resolvent family Sβα. Then the following
properties hold:

(a) Let m ∈ N ∪ {0}. Then for every x ∈ D(Am+1) and ∀ t ≥ 0,

Sβα(t)x =
m∑
j=0

gα(β+j)+1(t)Ajx+

∫ t

0
gα(m+1)(t− s)Sβα(s)Am+1x ds. (4.25)

(b) For every x ∈ D(An+1), the mapping t 7→ (gk−αβ ∗ Sβα)(t)x belongs

to Ck([0,∞);D(A)) and

dk

dtk

[
(gk−αβ ∗ Sβα)(t)x

]
=

n−1∑
j=0

gαj+1(t)Ajx+ (gα(n−β) ∗ Sβα)(t)Anx. (4.26)
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Moreover, for j = 0, 1, . . . , k − 1,

dj

dtj
[gk−αβ ∗ Sβα](0)x = 0, and

dk

dtk
[gk−αβ ∗ Sβα](0)x = x. (4.27)

(c) In general, for every x ∈ D(An+1−i), i = 0, 1, . . . , n, the mapping

t 7→ (gk−αβ ∗ gαi ∗ Sβα)(t)x belongs to Ck([0,∞);D(A)) and

dk

dtk

[
(gk−αβ ∗ gαi ∗ Sβα)(t)x

]
(4.28)

=

n−i∑
j=0

gαj+1+αi(t)A
jx+ (gα(n−β) ∗ gα ∗ Sβα)(t)An+1−ix.

(d) For every x ∈ D(An), the mapping t 7→ (gk−αβ ∗ Sβα)(t)x belongs to

Ck([0,∞);X) and the equalities (4.26), (4.27) hold.
(e) In general, for every x ∈ D(An−i), i = 0, 1, . . . , n, the mapping t 7→

(gk−αβ ∗ gαi ∗ Sβα)(t)x belongs to Ck([0,∞);X) and

dk

dtk

[
(gk−αβ ∗ gαi ∗ Sβα)(t)x

]
(4.29)

=
n−i∑
j=0

gαj+1+αi(t)A
jx+A(gα(n−β) ∗ gα ∗ Sβα)(t)An−ix.

Proof. Let A be a closed linear operator with domain D(A) defined on a
Banach space X. Let 0 < α ≤ 1, β ≥ 0 and set k := dαβe, n := dβe. Assume

that A generates an (α, 1)β-resolvent family Sβα.
(a) We prove (4.25) by induction. If m = 0, then for every x ∈ D(A), the

equality (4.25) reads

Sβα(t)x = gαβ+1(t)x+

∫ t

0
gα(t− s)Sβα(s)Ax ds, ∀ t ≥ 0

which is given by Lemma 4.5(b). Assume that (4.25) holds for m−1 for some
m ∈ N. Now, let x ∈ D(Am+1) ⊂ D(Am). Then using Lemma 4.5(a)-(b),
we have that

Sβα(t)x =

m−1∑
j=0

gα(β+j)+1(t)Ajx+ (gαm ∗ Sβα)(t)Amx

=
m−1∑
j=0

gα(β+j)+1(t)Ajx+Amgαm ∗
(
gαβ+1x+ gα ∗ SβαAx

)
(t)
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=
m∑
j=0

gα(β+j)+1(t)Ajx+ (gα(m+1) ∗ Sβα)(t)Am+1x.

We conclude that (4.25) holds and this completes the proof of part (a).
(b) Let x ∈ D(An+1). Then using (4.25) with m = n and (2.1) we get

that for every t ≥ 0,

(gk−αβ ∗ Sβα)(t)x =

n∑
j=0

gk+αj+1(t)Ajx+ (gα(n+1)+k−αβ ∗ Sβα)(t)An+1x.

Therefore, using (2.6) and Lemma 4.5(b) we have that for all t ≥ 0,

dk

dtk

[
(gk−αβ ∗ Sβα)(t)x

]
=

n∑
j=0

gαj+1(t)Ajx+ (gα(n+1)−αβ ∗ Sβα)(t)An+1x

=
n∑
j=0

gαj+1(t)Ajx+ (gα(n−β) ∗An(Sβα − gαβ+1))(t)x

=
n−1∑
j=0

gαj+1(t)Ajx+ (gα(n−β) ∗ Sβα)(t)Anx,

and we have shown (4.26). Since Anx ∈ D(A), it follows from (4.26) and

Lemma 4.5 that dk

dtk
(gk−αβ ∗ Sβα)(t)x ∈ C([0,∞);D(A)). Hence, (gk−αβ ∗

Sβα)(t)x ∈ Ck([0,∞);D(A)). Since g1(0) = 1 and gαj+1(0) = 0 for every j =
1, 2, . . . , n− 1, the identities in (4.27) follow from (4.26) and this completes
the proof of the assertion (b).

(c) Let x ∈ D(An+1−i), i = 0, 1, . . . , n. Proceeding as in the proof of part
(b), we obtain that

(gαi ∗ gk−αβ ∗ Sβα)(t)x =
n−1−i∑
j=0

gk+αj+αi+1(t)Ajx+ (gk+α(n−β) ∗ Sβα)(t)An−ix.

Using Lemma 4.5(b) and (2.6), the preceding equality implies that

dk

dtk
[(gαi ∗ gk−αβ ∗ Sβα)(t)x] =

n−1−i∑
j=0

gαj+αi+1(t)Ajx+ (gα(n−β) ∗ Sβα)(t)An−ix

=

n−i∑
j=0

gαj+αi+1(t)Ajx+ (gα(n−β) ∗ gα ∗ Sβα)(t)An+1−ix.

Hence, gαi ∗ gk−αβ ∗ Sβα)(t)x ∈ Ck([0,∞);D(A) and one has (4.28).
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(d) Let x ∈ D(An). Proceeding as in part (b), we also get (4.26) and this

implies that (gk−αβ ∗ Sβα)(t)x ∈ Ck([0,∞);X) and (4.27) holds.
(e) Let x ∈ D(An−i), i = 0, 1, . . . , n. Proceeding as in part (c), we

obtain that (gk−αβ ∗ gαi ∗ Sβα)(t)x ∈ Ck([0,∞);X) and (4.29) holds and this
completes the proof of the lemma. �

5. Regularized abstract Cauchy problem

In this section we show that the existence of the above defined resolvent
family Sβα is necessary and sufficient for the well-posedness of the regularized
abstract Cauchy problem{

Dαt v(t) = Av(t) + gαβ+1(t)x, t > 0

v(0) = 0,
(5.1)

where A is a closed linear operator with domain D(A) defined in a Banach
space X, that we assume throughout this section without any mention.

The following is the main result of this section.

Theorem 5.1. Let 0 < α ≤ 1 and β ≥ 0. Then the following assertions are
equivalent.

(i) The operator A generates an (α, 1)β-resolvent family Sβα on X.
(ii) For all x ∈ X, there exists a unique classical solution v of Prob-

lem (5.1) such that (g1−α ∗ v)(t) is exponentially bounded. That is,
v ∈ C([0,∞);D(A)), g1−α ∗ v ∈ C1([0,∞);X), (g1−α ∗ v)(t) is expo-
nentially bounded, and (5.1) is satisfied.

Proof. Let A, α and β be as in the statement of the theorem.

(i) ⇒ (ii): Assume that A generates an (α, 1)β-resolvent family Sβα on X
and let x ∈ X. Define

v(t) := (gα ∗ Sβα)(t)x =

∫ t

0
gα(t− s)Sβα(s)x ds, t ≥ 0.

Then v(0) = 0 and by Lemma 4.5(c) we have that v ∈ C([0,∞);D(A)).
Since for every t ≥ 0,

(g1−α ∗ v)(t) = (g1−α ∗ gα ∗ Sβα)(t)x = (g1 ∗ Sβα)(t)x =

∫ t

0
Sβα(s)x ds,

it follows that g1−α ∗ v ∈ C1([0,∞);X). Using (2.7) and Lemma 4.5(c), we
get that for every t ≥ 0,

Dαt v(t) = (g1−α ∗ v′)(t) =
d

dt
(g1−α ∗ v) (t) =

d

dt

[
(g1 ∗ Sβα)(t)x

)
] = Sβα(t)x



Fractional diffusion equations 27

= A(gα ∗ Sβα)(t)x+ gαβ+1(t)x = Av(t) + gαβ+1(t).

Hence, v is a classical solution of (5.1). Since (g1 ∗ Sβα)(t) is exponentially
bounded and

(g1−α ∗ v)(t) = (g1−α ∗ gα ∗ Sβα)(t)x = (g1 ∗ Sβα)(t)x,

it follows that (g1−α ∗ v)(t) is exponentially bounded. Assume that (5.1)
has two classical solutions v1 and v2 and set V := v1 − v2. Then V ∈
C([0,∞);D(A)), V (0) = 0, (g1−α ∗V ) ∈ C1([0,∞);X) and Dαt V (t) = AV (t)
for every t ≥ 0. Taking the Laplace transform on both sides of this equal-
ity, we get that for Re(λ) > ω (where ω is the real number from the above

mentioned exponential bound), (λα−A)V̂ (λ) = 0. Since (λα−A) is invert-

ible, we have that V̂ (λ) = 0. By the uniqueness theorem for the Laplace
transform and by continuity, we get that V (t) = 0 for every t ≥ 0. We have
shown uniqueness of solutions and this completes the proof of part (ii).

(ii) ⇒ (i): For x ∈ X, we let Sα,β(t)x := Dαt v(t, x) where v(t, x) is the
unique solution of (5.1). By the closed graph theorem, Sα,β(t) ∈ L(X) for
every t ≥ 0 (see the proof of Theorem 3.2.13 in [2]). Moreover, (Sα,β(t)) is
strongly continuous. Using (2.3) and the fact that v(0) = 0 we get that

(gα ∗ Sα,β)(t)x = (gα ∗ Dαt v)(t) = v(t, x)− v(0, x) = v(t, x).

Hence, (gα ∗ Sα,β)(t)x ∈ D(A) for every x ∈ X and one has the identity

A(gα ∗ Sα,β)x+ gαβ+1(t)x = Av(t, x) + gαβ+1(t)x = Sα,β(t)x. (5.2)

Since by assumption (g1−α ∗ v)(t) is exponentially bounded and

(g1 ∗ Sα,β)(t)x = (g1 ∗ g1−α ∗ v′)(t) = (g1−α ∗ g1 ∗ v′)(t) = (g1−α ∗ v)(t),

we have that (g1 ∗Sα,β)(t)x is exponentially bounded. By the uniform expo-
nential boundedness principle [2, Lemma 3.2.14], there exist some constants
M,ω ≥ 0 such that

‖(g1−α ∗ v)(t)‖ = ‖(g1 ∗ Sα,β)(t)x‖ ≤Meωt‖x‖, x ∈ X, t ≥ 0. (5.3)

Taking the Laplace transform on both sides of the identity (5.2), we get that
for Re(λ) > ω,

Aλ−αŜα,β(λ)x− Ŝα,β(λ)x = −λ−αβ−1x.

After multiplying both sides of the preceding identity by λα, we get that

(λα −A)Ŝα,β(λ)x = λ−αβ−1+αx.

The preceding equality implies that (λα − A) is surjective for Re(λ) > ω.
We show that it is injective as well. To this end, suppose (λα − A)x = 0
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for some x ∈ D(A) and Re(λ) > ω, that is Ax = λαx for Re(λ) > ω. It
is enough to consider that Ax = λαx for λ real and λ > ω. Then setting
v(t) = (gαβ+1 ∗ Ẽ)(t)x where Ẽ(t)x = tα−1Eα,α(λαtα)x, we prove that v is a
solution of Equation (5.1). Obviously v ∈ C([0,∞);D(A)) and (g1−α ∗ v) ∈
C1([0,∞);X). Using (2.14), we have that for every t > 0,

Dαt v(t) = (g1−α ∗ gαβ ∗ Ẽ)(t)x

= (gαβ+1−α ∗ Ẽ)(t)x = gαβ+1−α ∗ (gα + λαgα ∗ Ẽ))(t)x

= gαβ+1(t)x+A(gαβ+1 ∗ Ẽ)(t)x = gαβ+1(t)x+Av(t).

We have shown that v is a solution of Equation (5.1). Since all the solutions
v of Equation (5.1) satisfy (5.3), we must have this estimate for the solution

v(t) = (gαβ+1 ∗ Ẽ)(t)x just found. But using (2.9) we have that

Ẽ(t) = tα−1
∞∑
n=0

λαntαn

Γ(α(n+ 1))
=

∞∑
n=0

λαntα(n+1)−1

Γ(α(n+ 1))

which gives

(g1−α ∗ v)(t) = (gαβ+2−α ∗ Ẽ)(t)x = tαβ+1Eα,αβ+2(λαtα)x,

and hence by (2.15), ‖(g1−α ∗ v)(t)‖ ≤ Meλt‖x‖ and this estimate is sharp.
Therefore, we can only have (5.3) if x = 0. Therefore, (λα −A) is injective,
hence is invertible and

Ŝα,β(λ)x = λ−αβλα−1(λα −A)−1x,

that is, for every x ∈ X and Re(λ) > ω,

λα−1(λα −A)−1x = λαβ
∫ ∞

0
e−λtSα,β(t)x dt.

Hence, A generates an (α, 1)β-resolvent family Sβα and by the uniqueness

theorem for the Laplace transform and by continuity we have that Sβα(t)x =
Sα,β(t)x for every t ≥ 0 and x ∈ X. We have shown the assertion (i) and
the proof of the theorem is finished. �

We observe that if the family Sβα is exponentially bounded, then the so-
lution v in Theorem 5.1 is exponentially bounded as well.

Remark 5.2. We note that in Theorem 5.1, the assertion (g1−α ∗ v)(t)
is exponentially bounded agrees with the limiting case α = 1 in which the
conclusion reads v(t) is exponentially bounded (see e.g. [2, Theorem 3.2.13]).
An example showing that the exponential boundedness assumption cannot
be omitted is included in [2, Remark 3.2.15(b)] for the limiting case α = 1.
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6. The homogeneous abstract Cauchy problem

In this section we use the above defined resolvent families to investigate
the existence and the representation of solutions of homogeneous abstract
Cauchy problems of fractional order. More precisely, we consider the problem{

Dαt u(t) = Au(t), t > 0, 0 < α ≤ 1,

u(0) = x,
(6.1)

where A is a closed linear operator with domain D(A) defined in a Banach
space X and x is a given vector in X.

Definition 6.1. A function u ∈ C([0,∞);D(A)) is said to be a classical
solution of Problem (6.1) if g1−α ∗ (u− u(0)) ∈ C1([0,∞);X) and (6.1) is
satisfied.

We adopt the following definition of mild solutions.

Definition 6.2. A function u ∈ C([0,∞);X) is said to be a mild solution
of Problem (6.1) if Iαt u(t) := (gα ∗ u)(t) ∈ D(A) for every t ≥ 0, and

u(t) = x+A

∫ t

0
gα(t− s)u(s) ds, ∀ t ≥ 0.

Throughout this section we assume that A is a closed linear operator with
domain D(A) defined in a Banach space X. First, we show the uniqueness
of mild solutions and hence, of classical solutions.

Proposition 6.3. Let 0 < α ≤ 1. Then the following assertions hold.

(a) If u is a classical solution of (6.1), then it is a mild solution of (6.1).
(b) If (λα−A) is invertible for Re(λ) large enough, and if a mild solution

u exists and (g1 ∗ u)(t) is exponentially bounded, then it is unique.

Proof. Let 0 < α ≤ 1 and let A be a closed linear operator with domain
D(A) defined on a Banach space X.

(a) Let u be a classical solution of (6.1). Since u ∈ C([0,∞);D(A)) we
have that (gα ∗ u)(t) ∈ C([0,∞);D(A)). Since Dαt u(t) = Au(t), that is,
(g1−α ∗ u′)(t) = Au(t), we have that (gα ∗ g1−α ∗ u′)(t) = A(gα ∗ u)(t), i.e.,
(g1 ∗ u′)(t) = A(gα ∗ u)(t). Hence, u(t)− u(0) = A(gα ∗ u)(t) for every t ≥ 0
and we have shown that u is a mild solution of (6.1).

(b) Assume that (6.1) has two mild solutions u and v and set U := u− v.
Then U ∈ C([0,∞);X), (gα ∗ U)(t) ∈ D(A) for every t ≥ 0 and U(t) =

A(gα ∗U)(t). Taking the Laplace transform, we get that (I − λ−αA)Û(λ) =
0 for Re(λ) > ω (where ω ≥ 0 is the real number from the exponential
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boundedness of (g1 ∗ u)(t)). Since by assumption (I − λ−αA) is invertible,

we have that Û(λ) = 0. By the uniqueness theorem for the Laplace transform
and by continuity, we get that U(t) = 0 for every t ≥ 0. Hence, u(t) = v(t)
for every t ≥ 0. The proof is finished. �

Remark 6.4. We notice that in order to prove the existence of solutions of
Problem (6.1), we proceed by direct construction and make minimal use of
the Laplace transform.

The following theorem is the main result of this section.

Theorem 6.5. Let 0 < α ≤ 1, β ≥ 0 and set k := dαβe, n := dβe. As-

sume that A generates an (α, 1)β-resolvent family Sβα. Then the following
assertions hold.

(a) For every x ∈ D(An+1), the function u(t) := Dαβ
t Sβα(t)x is the unique

classical solution of the abstract Cauchy problem (6.1).

(b) For every x ∈ D(An), the function u(t) := Dαβ
t Sβα(t)x is the unique

mild solution of the abstract Cauchy problem (6.1).

Proof. Let A, α, β, n, k and Sβα be as in the statement of the theorem.
First we prove existence of mild and classical solutions.

(a) Let x ∈ D(An+1). By (4.26) in Lemma 4.17, we have for every t ≥ 0,

u(t) : = Dαβ
t Sβα(t)x =

dk

dtk

(
gk−αβ ∗ Sβα

)
(t)x (6.2)

=
n−1∑
j=0

gαj+1(t)Ajx+ (gα(n−β) ∗ Sβα)(t)Anx.

It follows from (6.2) and Lemma 4.17 that u ∈ C([0,∞);D(A)) and u(0) = x.
Using (6.2) and Lemma 4.5, we get that for every t ≥ 0,

g1−α ∗ (u− u(0))(t) = (g1−α ∗ u)(t)− g2−α(t)x

= g1−α ∗
[ n−1∑
j=0

gαj+1(t)Ajx+ (gα(n−β) ∗ Sβα)(t)Anx
]
− g2−α(t)x

=
n−1∑
j=1

gαj+2−α(t)Ajx+ gα(n−β)+1−α ∗
[
gαβ+1(t)Anx+ (gα ∗ Sβα)(t)An+1x

]
=

n∑
j=1

gαj+2−α(t)Ajx+ (gα(n−β)+1 ∗ Sβα)(t)An+1x. (6.3)
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Using (6.3) we get that for every t ≥ 0,

d

dt

[
g1−α ∗ (u− u(0))(t)

]
=

n∑
j=1

gαj+1−α(t)Ajx+ (gα(n−β) ∗ Sβα)(t)An+1x

∈ C([0,∞);X).

Hence, g1−α ∗ (u−u(0)) ∈ C1([0,∞);X). It remains to show that u satisfies
(6.1). Using (6.2), (2.3), (2.7) and Lemma 4.5(b), we have that for t ≥ 0,

Dαt u(t) = Dαt D
αβ
t Sβα(t)x = Dαt

[ dk
dtk
(
gk−αβ ∗ Sβα

)]
(t)x (6.4)

= g1−α ∗
[ dk+1

dtk+1

(
gk−αβ ∗ Sβα

)]
(t)x

= g1−α ∗
d

dt

[ n−1∑
j=0

gαj+1(t)Ajx+ (gα(n−β) ∗ Sβα)(t)Anx
]

=
n−1∑
j=1

gαj+1−α(t)Ajx+
d

dt

[
(g1−α ∗ gα(n−β) ∗ Sβα)(t)Anx

]

=

n−1∑
j=1

gαj+1−α(t)Ajx+ gαn+1−α(t)Anx+ (gα(n−β) ∗ Sβα)(t)An+1x

=
n−1∑
j=0

gαj+1(t)Aj+1x+ (gα(n−β) ∗ Sβα)(t)An+1x

= ADαβ
t Sβα(t)x = Au(t)

and this completes the proof of the existence part in assertion (a).
(b) Let x ∈ D(An) and set

u(t) := Dαβ
t Sβα(t)x =

dk

dtk

[
(gk−αβ ∗ Sβα)(t)x

]
.

It follows from Lemma 4.17(d) that u ∈ C([0,∞);X) and u(0) = x. Since
(by (4.26) in Lemma 4.17)

Iαt u(t) : = (gα ∗Dαβ
t Sβα)(t)x = gα ∗

[ dk
dtk

(gk−αβ ∗ Sβα)
]
(t)x

=
n−1∑
j=0

gαj+1+α(t)Ajx+ (gα(n−β) ∗ gα ∗ Sβα)(t)Anx,
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it follows from Lemma 4.5 that Iαt u(t) ∈ D(A) for every t ≥ 0. Using Lemma
4.17 and Lemma 4.5, we have that for every t ≥ 0,

u(t) =
n−1∑
j=0

gαj+1(t)Ajx+ (gα(n−β) ∗ Sβα)(t)Anx (6.5)

= x+A
[ n−1∑
j=1

gαj+1(t)Aj−1x+ (gα(n−β) ∗ Sβα)(t)An−1x
]

= x+A
[ n∑
j=1

gαj+1(t)Aj−1x+ (gα(n−β) ∗ gα ∗ Sβα)(t)Anx
]

= x+Agα ∗
[ n−1∑
j=0

gαj+1(t)Ajx+ (gα(n−β) ∗ Sβα)(t)Anx
]

= x+A(gα ∗ u)(t)

Hence, u is a mild solution of (6.1) and this completes the proof of the
existence part in assertion (b).

It remains to show the uniqueness of solutions. Let x ∈ D(An) and let u
be a mild solution. We just have to show that (g1 ∗ u)(t) is exponentially
bounded. Using (6.2), we have that for every t ≥ 0,

(g1 ∗ u)(t) =

n−1∑
j=0

gαj+2(t)Ajx+ (gα(n−β)+1 ∗ Sβα)(t)Anx.

Using Lemma 4.3 we get from the preceding equality that there exist some
constants M,ω ≥ 0 such that for every t ≥ 0,

‖(g1 ∗ u)(t)‖ ≤Meωt
n∑
j=0

‖Ajx‖.

Hence, (g1 ∗ u)(t) is exponentially bounded. Now, Proposition 6.3 implies
the uniqueness of mild and classical solutions. The proof is finished. �

Remark 6.6. We note the following facts regarding Theorem 6.5.
(a) First, we observe that although in (6.1) we have the Caputo frac-

tional derivative Dαt , the solution is given by the Riemann-Liouville deriva-

tive Dαβ
t Sβα(t)x. If αβ is not an integer, then the function Dαβt Sβα(t)x is not

a solution of (6.1), unless x = 0.

(b) Second, we have that for every x ∈ D(An+1), (gk−αβ ∗ Sβα)(t)x ∈
Ck+1((0,∞);X), that is, Dαβ

t Sβα(t)x is differentiable with value in X on the
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open interval (0,∞). But, Dαβ
t Sβα(t)x is not differentiable at t = 0+. Indeed,

it is well-known that for every function v ∈ C([0,∞);X) and 0 < α ≤ 1,

lim
t↓0

Iαt v(t)

gα+1(t)
= lim

t↓0

(gα ∗ v)(t)

gα+1(t)
= v(0). (6.6)

Since Dαβ
t Sβα(0)x = x and Dαβ

t Sβα(t)x is a solution of (6.1), we have that

lim
t↓0

Dαβ
t Sβα(t)x− x
gα+1(t)

= lim
t↓0

Iαt Dαt D
αβ
t Sβα(t)x

gα+1(t)
= lim

t↓0

Iαt D
αβ
t Sβα(t)Ax

gα+1(t)
= Ax.

(6.7)

The identity (6.7) shows that the mapping t 7→ Dαβ
t Sβα(t)x is not differen-

tiable at t = 0+ if Ax 6= 0.

(c) Finally, although Dαβ
t Sβα(t)x is not differentiable at t = 0+, we have

that g1−α ∗
d

dt

[
Dαβ
t Sβα(t)x

]
is continuous at t = 0, that is, Dαt D

αβ
t Sβα(t)x is

continuous at t = 0. Indeed, since (by (6.3)),

g1−α ∗
d

dt

[
Dαβ
t Sβα(t)x

]
=

n−1∑
j=0

gαj+1(t)Aj+1x+ (gα(n−β) ∗ Sβα)(t)An+1x,

it follows that

lim
t→0

(
g1−α ∗

d

dt

[
Dαβ
t Sβα(t)x

] )
= Ax = lim

t→0
Dαt D

αβ
t Sβα(t)x = Dαβ

t Sβα(0)Ax.

(6.8)

More precisely, we have the following result.

Lemma 6.7. Let 0 < α ≤ 1, β ≥ 0 and set k := dαβe, n := dβe. As-

sume that A generates an (α, 1)β-resolvent family Sβα. Then for every x ∈
D(An+1),

lim
t→0

Sβα(t)x− gαβ+1(t)x

gαβ+1+α(t)
= Ax = lim

t→0

Dαβ
t Sβα(t)x− x
g1+α(t)

= lim
t→0

Dαt D
αβ
t Sβα(t)x.

(6.9)

Proof. We have to prove the first two equalities, the last one corresponds
to (6.8). Let x ∈ D(An+1). Using Lemma 4.17 we get that, for every t > 0,

Sβα(t)x− gαβ+1(t)x

gαβ+1+α(t)
=

∑n
j=1 gα(β+j)+1A

jx

gαβ+1+α(t)
+

(gα(n+1) ∗ S
β
α)(t)An+1x

gαβ+1+α(t)

=

n∑
j=1

tα(j−1)Ajx+
Iαt (gαn ∗ Sβα)(t)An+1x

gαβ+1+α(t)
.
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Taking the limit of the preceding equality as t→ 0 and using (6.6), we obtain

lim
t→0

Sβα(t)x− gαβ+1(t)x

gαβ+1+α(t)

= lim
t→0

n∑
j=1

tα(j−1)Ajx+ lim
t→0

(I
α(n+1)
t Sβα)(t)An+1x

gα(n+1)+1(t)

gα(n+1)+1(t)

gαβ+1+α(t)

= lim
t→0

n∑
j=1

tα(j−1)Ajx+ lim
t→0

(I
α(n+1)
t Sβα)(t)An+1x

gα(n+1)+1(t)
tα(n−β)

= Ax.

We have shown the first equality in (6.9). Finally, using (4.26) in Lemma
4.17 we get that for all t > 0,

Dαβ
t Sβα(t)x− x
g1+α(t)

=

∑n
j=1 gαj+1(t)Ajx

gα+1(t)
+
Iαt (gα(n−β) ∗ S

β
α)(t)An+1x

gα+1(t)
.

Taking the limit of the preceding equality as t→ 0 and using (6.6), we get

lim
t→0

Dαβ
t Sβα(t)x− x
g1+α(t)

= lim
t→0

∑n
j=1 gαj+1(t)Ajx

gα+1(t)
+ lim
t→0

Iαt (gα(n−β) ∗ S
β
α)(t)An+1x

gα+1(t)
= Ax,

and this completes the proof of the lemma. �

We have the following description of the generator A of the resolvent

family Sβα. We refer to [2, Lemma 3.2.2] for related results in the case
of integrated semigroups and [2, Proposition 3.14.5] in the case of cosine
families.

Proposition 6.8. Let 0 < α ≤ 1, β ≥ 0 and assume that A generates an

(α, 1)β- resolvent family Sβα. Then

A={(x, y) ∈ X ×X, Sβα(t)x = gαβ+1(t)x+ (gα ∗ Sβα)(t)y, ∀ t > 0}. (6.10)

Proof. First we notice that since the (α, 1)β- resolvent family Sβα is non-
degenerate, the right hand side of (6.10) defines a single-valued operator.
Next, let x, y ∈ X. We have to show that x ∈ D(A) and Ax = y if and only
if

Sβα(t)x = gαβ+1(t)x+ (gα ∗ Sβα)(t)y, ∀ t > 0. (6.11)
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Indeed, let x ∈ D(A) and assume that Ax = y. Since A generates an

(α, 1)β- resolvent family Sβα and Ax = y, then (6.11) follows from Lemma
4.5. Conversely, let x, y ∈ X and assume that (6.11) holds. Taking the
Laplace transform on both sides of (6.11), we get that for Re(λ) > ω (where

ω ≥ 0 is the real number from the definition of Sβα),

λα−1(λα −A)−1x = λ−1x+ λ−1(λα −A)−1y. (6.12)

The identity (6.12) implies that x ∈ D(A). Applying (λα−A) to both sides
of (6.12), we get that

λα−1x = λ−1(λα −A)x+ λ−1y = λα−1x− λ−1Ax+ λ−1y,

and this implies that Ax = y. The proof is finished. �

7. The inhomogeneous Cauchy problem

In this section we study the solvability of inhomogeneous fractional order
abstract Cauchy problems. More precisely, we investigate the existence,
uniqueness and the representation of solutions of the following fractional
order abstract Cauchy problem:{

Dαt u(t) = Au(t) + f(t), t > 0, 0 < α ≤ 1,

u(0) = x,
(7.1)

where A is a closed linear operator with domain D(A) in a Banach space X
(that we assume throughout the section without any mention), f : [0,∞)→
X is a given function and x is a given vector in X.

Definition 7.1. A function u ∈ C([0,∞);D(A)) is said to be a classical
solution of (7.1) if g1−α ∗ (u− u(0)) ∈ C1([0,∞);X) and (7.1) is satisfied.

We adopt the following definition of mild solutions.

Definition 7.2. A function u ∈ C([0,∞);X) is said to be a mild solution
of (7.1) if Iαt u(t) := (gα ∗ u)(t) ∈ D(A) for every t ≥ 0, and

u(t) = x+A

∫ t

0
gα(t− s)u(s) ds+

∫ t

0
gα(t− s)f(s) ds, ∀ t ≥ 0.

As for the homogeneous problem in Section 6, we have the following
uniqueness result. Its proof runs similar to the proof of Proposition 6.3.

Proposition 7.3. Let 0 < α ≤ 1. Then the following assertions hold.

(a) If u is a classical solution of (7.1), then it is a mild solution of (7.1).
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(b) If (λα−A) is invertible for Re(λ) large enough, and if a mild solution
u exists and (g1 ∗ u)(t) is exponentially bounded, then it is unique.

Remark 7.4. As for the homogeneous equation in Section 6, to prove the
existence of mild and classical solutions of Problem (7.1), we proceed by a
direct method without the use of the Laplace transform.

We have the following result of existence and representation of classical
and mild solutions of Problem (7.1) which is the main result of this section.

Theorem 7.5. Let 0 < α ≤ 1, β ≥ 0 and set n := dβe, k := dαβe. As-

sume that A generates an (α, 1)β-resolvent family Sβα. Then the following
assertions hold.

(a) For every f ∈ Ck+1([0,∞);X), f (i)(0) ∈ D(An+1−i), i = 0, 1, . . . , k,

Dαβt f(t) :=(gk−αβ∗f (k))(t) is exponentially bounded and x∈D(An+1),
Problem (7.1) has a unique classical solution u given by

u(t) = Dαβ
t Sβα(t)x+Dαβ

t D1−α
t (Sβα ∗ f)(t), t ≥ 0. (7.2)

(b) For f ∈ Ck([0,∞);X), f (i)(0) ∈ D(An−i), i = 0, 1, . . . , k − 1,

Dαβt f(t) := (gk−αβ ∗f (k))(t) is exponentially bounded and x ∈ D(An),
Problem (7.1) has a unique mild solution u given by (7.2).

Proof. Let A, α, β, n and k be as in the statement of the theorem. First
we show existence of solutions.

(a) Let x ∈ D(An+1). By Lemma 4.17, Dαβ
t Sβα(t)x ∈ C([0,∞);D(A))

and Dαβ
t Sβα(0)x = x. By the proof of Theorem 6.5(a) we have that g1−α ∗

(Dαβ
t Sβα(t)x− x) ∈ C1([0,∞);X). Now, assume that f satisfies the hypoth-

esis in the statement of the theorem. Using Lemma 4.17, Lemma 4.5(b), the
equality (2.8), the fact that f ∈ Ck+1([0,∞);X) and proceeding as in the
proof of Theorem 6.5, we get that for every t ≥ 0,

Dαβ
t D1−α

t (Sβα ∗ f)(t) =
dk

dtk

[
gk−αβ ∗ (gα ∗

d

dt
(Sβα ∗ f)(t)

]
(7.3)

=

k∑
i=0

n−i∑
j=1

gαj+i+1A
j−1(t)f (i)(0) +

k∑
i=0

(gα(n−β)+i(1−α)+α ∗ Sβα)(t)An−if (i)(0)

+ (gk−αβ ∗ gα ∗ Sβα ∗ f (k+1))(t).

It follows from (7.3) and Lemma 4.5 that

Dαβ
t D1−α

t (Sβα ∗ f)(t) ∈ C([0,∞);D(A)).
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Let u be given by (7.2). We have shown that u ∈ C([0,∞);D(A)). Using
(6.3) and (7.3), we get that for every t ≥ 0,

(g1−α ∗ (u− u(0)))(t)

=
n∑
j=1

gαj+2−α(t)Ajx+ (gα(n−β)+1 ∗ Sβα)(t)An+1x

+
k∑
i=0

n−i∑
j=1

gα(j−1)+i+2(t)Aj−1f (i)(0)

+
k∑
i=0

(gα(n−β)+i(1−α)+1 ∗ Sβα)(t)An−if (i)(0) + (gk−αβ ∗ g1 ∗ Sβα ∗ f (k+1))(t).

Therefore,

d

dt
[(g1−α ∗ (u− u(0))(t)] =

n∑
j=1

gαj+1−α(t)Ajx+ (gα(n−β) ∗ Sβα)(t)An+1x

+
k∑
i=0

n−i∑
j=1

gα(j−1)+i+1(t)Aj−1f (i)(0) +
k∑
i=0

(gα(n−β)+i(1−α) ∗ Sβα)(t)An−if (i)(0)

+ (gk−αβ ∗ Sβα ∗ f (k+1))(t). (7.4)

It follows from (7.4), Lemma 4.5 and Lemma 4.17 that g1−α ∗ (u − u(0)) ∈
C1([0,∞);X). By the proof of Theorem 6.5(a) we have that

Dαt D
αβ
t Sβα(t)x = ADαβ

t Sβα(t)x. (7.5)

Using (7.3), (2.7) and Lemma 4.5, we get that for every t ≥ 0,

Dαt D
αβ
t D1−α

t (Sβα ∗ f)(t) = g1−α ∗
d

dt

[ dk
dtk

(
gk−αβ ∗ gα ∗

d

dt
(Sβα ∗ f)

)
(t)
]

= g1−α ∗
dk+2

dtk+2

[
(gk+1+α ∗ f)(t) + (gk−αβ+α ∗Agα ∗ Sβα ∗ f)(t)

]
=

dk+2

dtk+2

[
(gk+2 ∗ f)(t) + (gk+1−αβ ∗Agα ∗ Sβα ∗ f)(t)

]
= f(t) +

dk+1

dtk+1

[
(gk−αβ ∗Agα ∗ Sβα ∗ f)(t)

]
= f(t) +ADαβ

t D1−α
t (Sβα ∗ f)(t). (7.6)

Combining (7.5) and (7.6), we have that for every t ≥ 0,

Dαt u(t) = Dαt D
αβ
t Sβα(t)x+ Dαt D

αβ
t D1−α

t (Sβα ∗ f)(t)
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= ADαβ
t Sβα(t)x+ f(t) +ADαβ

t D1−α
t (Sβα ∗ f)(t)

= A
[
Dαβ
t Sβα(t)x+Dαβ

t D1−α
t (Sβα ∗ f)(t)

]
+ f(t) = Au(t) + f(t).

Hence, u is a classical solution of (7.1) and this completes the proof of
existence part in assertion (a).

(b) Let x ∈ D(An). By Lemma 4.17, Dαβ
t Sβα(t)x ∈ C([0,∞);X). It

follows from the proof of Theorem 6.5(b) that

Iαt D
αβ
t Sβα(t)x := (gα ∗Dαβ

t Sβα)(t)x ∈ D(A)

for every t ≥ 0. Assume that f satisfies the hypothesis in the statement of
the theorem. Proceeding as in (7.3) we get that for every t ≥ 0.

Iαt D
αβ
t D1−α

t (Sβα ∗ f)(t) = gα ∗Dαβ
t D1−α

t (Sβα ∗ f)(t)

=

k−1∑
i=0

n−i∑
j=1

gαj+i+1(t)Aj−1f (i)(0) +

k−1∑
i=0

(gα(n−β)+i(1−α)+α ∗ Sβα)(t)An−if (i)(0)

+ (gk−αβ ∗ gα ∗ Sβα ∗ f (k))(t). (7.7)

It follows from (7.7), Lemma 4.17 and Lemma 4.5 that

Iαt D
αβ
t D1−α

t (Sβα ∗ f)(t) ∈ D(A)

for every t ≥ 0. We have shown that

Iαt u(t) = Iαt D
αβ
t Sβα(t)x+ Iαt D

αβ
t D1−α

t (Sβα ∗ f)(t) ∈ D(A)

for every t ≥ 0. It follows from (6.5) in the proof of Theorem 6.5(b) that for
every t ≥ 0,

Dαβ
t Sβα(t)x = x+A(gα ∗Dαβ

t Sβα)(t)x. (7.8)

Proceeding as in (7.6) and using Lemma 4.5, we have that for every t ≥ 0,

Dαβ
t D1−α

t (Sβα ∗ f)(t) =
dk

dtk

[(
gk−αβ ∗ gα ∗

d

dt
(Sβα ∗ f)

)
(t)
]

=
dk+1

dtk+1

[
(gk+1+α ∗ f)(t) +Agα ∗ (gk−αβ ∗ gα ∗ Sβα ∗ f)(t)

]
= (gα ∗ f)(t) +A

(
gα ∗

dk+1

dtk+1
[(gk−αβ ∗ gα ∗ Sβα ∗ f)]

)
(t)

= (gα ∗ f)(t) +A
(
gα ∗Dαβ

t D1−α
t (Sβα ∗ f)

)
(t). (7.9)

Combining (7.8) and (7.9) we get that for every t ≥ 0,

u(t) = Dαβ
t Sβα(t)x+Dαβ

t D1−α
t

(
Sβα ∗ f

)
(t)
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= x+A(gα ∗Dαβ
t Sβα)(t)x+ (gα ∗ f)(t) +A

(
gα ∗Dαβ

t D1−α
t (Sβα ∗ f)

)
(t)

= x+ (gα ∗ f)(t) +Agα ∗
[
Dαβ
t Sβα(t)x+Dαβ

t D1−α
t (Sβα ∗ f)(t)

]
= x+A(gα ∗ u)(t) + (gα ∗ f)(t).

Hence, u is a mild solution of (7.1) and this completes the proof of the
existence pat in assertion (b).

It remains to show the uniqueness of solutions. Let x ∈ D(An) and let f
satisfy the assumptions in part (b) of the theorem. Let u be a mild solution.
It follows from (6.2) and (7.3) that for every t ≥ 0,

(g1 ∗ u)(t) =

n−1∑
j=0

gαj+2(t)Ajx+ (gα(n−β)+1 ∗ Sβα)(t)Anx

+
k−1∑
i=0

n−1−i∑
j=1

gαj+i+2(t)Aj−1f (i)(0)

+
k−1∑
i=0

(gα(n−β)+i(1−α)+α+1 ∗ Sβα)(t)An−1−if (i)(0)

+ (gk−αβ ∗ gα+1 ∗ Sβα ∗ f (k))(t). (7.10)

Since by assumption there exists some constants M1, ω1 ≥ 0 such that
‖(gk−αβ ∗ f (k))(t)‖ ≤ M1e

ω1t, using Lemma 4.3, the equality (7.10) implies
that there exist some constants M,ω ≥ 0 such that

(g1 ∗ u)(t) ≤Meωt
[ n∑
j=0

‖Ajx‖+
k−1∑
i=0

n−1−i∑
j=1

‖Aj−1f (i)(0)‖

+
k−1∑
i=0

‖An−1−if (i)(0)‖+M1e
ω1t
]
.

We have shown that (g1 ∗ u)(t) is exponentially bounded. Now, the unique-
ness of mild and classical solutions follows from Proposition 7.3 and this
completes the proof of the theorem. �

As a corollary of Theorem 7.5, we have the following representation of

solutions in case A also generates an (α, α)β-resolvent family P βα .
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Corollary 7.6. Let 0 < α ≤ 1, β ≥ 0 and set n := dβe, k := dαβe. Assume

that A generates an (α, α)β-resolvent family P βα . Let Sβα be the (α, 1)β-
resolvent family generated by A (which exists by Remark 4.4(a)). Then the
following assertions hold.

(a) For every f ∈ Ck+1([0,∞);X), f (j)(0) ∈ D(An+1−j), j = 0, 1, . . . , k,

Dαβt f(t) := (gk−αβ ∗ f (k))(t) is exponentially bounded, and for every
x ∈ D(An+1), the unique classical solution u of (7.1) is given by

u(t) = Dαβ
t

(
Sβα(t)x+

∫ t

0
P βα (t− s)f(s) ds

)
. (7.11)

(b) For every f ∈ Ck([0,∞);X), f (j)(0) ∈ D(An−j), j = 0, 1, . . . , k − 1,

Dαβt f(t) := (gk−αβ ∗ f (k))(t) is exponentially bounded, and for every
x ∈ D(An), the unique mild solution u of (7.1) is given by (7.11).

Proof. Using Remark 4.4 we have that for every t ≥ 0,

Dαβ
t D1−α

t (Sβα ∗ f)(t) = Dαβ
t D1−α

t (g1−α ∗ P βα ∗ f)(t)

= Dαβ
t gα ∗

d

dt
(g1−α ∗ P βα ∗ f)(t)

= Dαβ
t

d

dt

[
(g1 ∗ P βα ∗ f)(t)

]
= Dαβ

t (P βα ∗ f)(t),

and this completes the proof. �

8. Applications

In this section we give several examples where the results of the previous
sections are applied.

Throughout this section we assume that Ω ⊂ RN is an open set with
Lipschitz continuous boundary ∂Ω. Let the real valued coefficients satisfy,
aij ∈ L∞(Ω), bj , cj , d ∈ L∞(Ω), i, j = 1, 2, . . . , N and γ ∈ L∞(∂Ω). We
assume that γ(z) ≥ 0 for σ-a.e. z ∈ ∂Ω, where σ is the Lebesgue surface
measure, γ ∈ L∞(∂Ω) and that there exists a constant µ > 0 such that

N∑
i,j=1

aij(x)ξiξj ≥ µ|ξ|2 for all ξ ∈ RN , (8.1)

for a.e. x ∈ Ω. Let the operator A be given formally by

Au =
N∑
j=1

Dj

( N∑
i=1

ai,jDiu+ bju
)
−
( N∑
i=1

ciDiu+ du
)

(8.2)



Fractional diffusion equations 41

and let

∂u

∂νA
:=

N∑
j=1

( N∑
i=1

aijDiu+ bju
)
· νj ,

where ν denotes the outer normal vector of Ω at the boundary ∂Ω.

Example 8.1 (Non-homogeneous Neumann and Robin boundary
conditions on Lp). Let A be the elliptic operator given in (8.2) and let
1 ≤ p <∞. For convenience we assume that Ω ⊂ RN is connected, otherwise
we could consider each connected component separately. For 0 < α ≤ 1, we
consider the fractional order inhomogeneous diffusion equation with non-
homogeneous boundary conditions

Dαt u(t, x) = Au(t, x) + f(t, x), t > 0, x ∈ Ω,
∂u(t, z)

∂νA
+ γ(z)u(t, z) = g(t, z), t > 0, z ∈ ∂Ω,

u(0, x) = u0(x), x ∈ Ω.

(8.3)

Here, u0 ∈ Lp(Ω), f ∈ C([0,∞);Lp(Ω)), g ∈ C([0,∞);Lp(∂Ω)) are given
functions. We consider the first order Sobolev space

H1(Ω) :=
{
u ∈ L2(Ω),

∫
Ω
|∇u|2 dx <∞

}
endowed with the norm

‖u‖H1(Ω) :=
(∫

Ω
|u|2 dx+

∫
Ω
|∇u|2 dx

)1/2
.

Let Aγ be the bilinear closed form in L2(Ω) with domain H1(Ω) defined
for u, v ∈ H1(Ω) by

Aγ(u, v) : =

∫
Ω

N∑
j=1

( N∑
i=1

aijDiu+ bju
)
Djv dx

+

∫
Ω

( N∑
j=1

cjDju+ du
)
v dx+

∫
∂Ω
γuv dσ.

We define the linear closed operator A2,γ on the product space L2(Ω) ×
L2(∂Ω) as follows:

{
D(A2,γ) := {(u, 0) : u ∈ H1(Ω), Au ∈ L2(Ω), ∂u

∂νA
∈ L2(∂Ω)}

A2,γ(u, 0) =
(
Au,− ∂u

∂νA
− γu

)
.

(8.4)
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Let u ∈ H1(Ω). It is easy to check that (u, 0) ∈ D(A2,γ) and −A2,γ(u, 0) =
(f, g) if and only if for every v ∈ H1(Ω),

Aγ(u, v) =

∫
Ω
fv dx+

∫
∂Ω
gv dσ. (8.5)

We notice D(A2,γ) is not dense in L2(Ω) × L2(∂Ω) unless ∂u
∂νA

+ γu = 0 on

∂Ω. Applying Sobolev and Hölder inequalities we have that there exists a
constant ω ≥ 0 such that for every function u ∈ H1(Ω),

Aγ(u, u) ≥ µ

2

∫
Ω
|∇u|2 dx− ω

∫
Ω
|u|2 dx. (8.6)

We define the zero boundary conditions operator A0
2,γ on L2(Ω) as follows:{

D(A0
2,γ) = {u ∈ H1(Ω) : Au ∈ L2(Ω), ∂u

∂νA
+ γu = 0}

A0
2,γu = Au.

(8.7)

The operator A0
2,γ is a realization of the operator A in L2(Ω) with Robin

boundary conditions and Neumann boundary conditions if γ ≡ 0.
By [3], −A0

2,γ generates an analytic C0-semigroup (T0(t))t≥0 on L2(Ω).

Moreover, the semigroup T0 interpolates on Lp(Ω), 1 ≤ p ≤ ∞. Hence,
there are consistent semigroups on Lp(Ω) for every p ∈ [1,∞] which are
strongly continuous if p ∈ [1,∞). We denote the semigroups on Lp(Ω),
1 ≤ p <∞, by T0,p so that the semigroup T0 on L2(Ω) coincides with T0,2.

Next, for 1 ≤ p < ∞, we let Xp(Ω) := Lp(Ω) × Lp(∂Ω). Let Ap,γ be the

operator defined in Xp(Ω) as follows:

D(Ap,γ) :=
{

(u, 0) ∈ D(A2,γ) : Au ∈ Lp(Ω), ∂u
∂νA
∈ Lp(∂Ω)

}
Ap,γ(u, 0) =

(
Au,− ∂u

∂νA
− γu|∂Ω

)
.

(8.8)

Let u ∈ H1(Ω). As in the case p = 2, we have that (u, 0) ∈ D(Ap,γ) if and

only if there exists (f, g) ∈ Xp(Ω) such that u is a weak solution of{
−Au = f in Ω
∂u
∂νA

+ γu = g on ∂Ω.

That is, u ∈ H1(Ω) and for every v ∈ H1(Ω)

Aγ(u, v) =

∫
Ω
fv dx+

∫
∂Ω
gv dσ. (8.9)
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We claim that the operator Ap,γ generates a once-integrated semigroup

(T p1 (t)) on Xp(Ω) given for every (f, g) ∈ Xp(Ω) and λ > 0 by

T p1 (t)(f, g) = λ

∫ t

0
T̃0,p(s)(λ−A)−1(f, g) ds+ [I − T̃0,p(t)](λ−A)−1(f, g).

(8.10)

Here T̃0,p(t)(u, 0) = (T0,p(t), 0), where (T0,p(t)) is the strongly continuous
semigroup on Lp(Ω) introduced above.

Indeed, first, let A2,γ be the operator on X2(Ω) defined in (8.4). Let ω be
as in (8.6) and fix λ > ω. Then, for all u ∈ H1(Ω),

λ

∫
Ω
|u|2 dx+Aγ(u, u) ≥ min

{
λ− ω, µ

2

}
‖u‖2H1(Ω), (8.11)

where µ > 0 is given in (8.1). It follows from the Lax-Milgram Theorem [13,
Section 5.8] that for every (f, g) ∈ X2(Ω), there exists a unique u ∈ H1(Ω)
such that for all v ∈ H1(Ω),

λ

∫
Ω
uv dx+Aγ(u, v) =

∫
Ω
fv dx+

∫
∂Ω
gv dσ. (8.12)

That is, there exists a function u ∈ H1(Ω) with (u, 0) ∈ D(A2,γ) and

(λ−A2,γ)(u, 0) = (λu, 0)−A2,γ(u, 0) = (f, g).

We have shown that λ − A2,γ : D(A2,γ) → X2(Ω) is a bijection for λ > ω.
Assume now that f ≥ 0 and g ≤ 0. Let (u, 0) := (λ− A2,γ)−1(f, g) and set
v := u+. Then using (8.12), we get that

0 ≥
∫

Ω
fv dx+

∫
∂Ω
gv dσ = λ

∫
Ω
uv dx+Aγ(u, v)

= λ

∫
Ω
|v|2 dx+Aγ(v, v) ≥ 0.

Using (8.11), the preceding estimate implies that v = 0, that is, u ≤ 0
a.e. on Ω. We have shown that (λ − A2,γ)−1 is a positive operator. Since
every positive operator is continuous, we obtain that λ − A2,γ is invertible.
In particular, we have also proved that the operator A2,γ is closed. Hence,
D(A2,γ) is a Banach space for the graph norm of A2,γ , and by definition
of A2,γ we have that D(A2,γ) ⊂ H1(Ω) × {0}. Since both of these spaces

are continuously embedded into X2(Ω), we deduce from the closed graph
theorem that D(A2,γ) is continuously embedded into H1(Ω)×{0}. We have

shown that the operator A2,γ is resolvent positive. Since X2(Ω) is a Banach
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lattice with order continuous norm, it follows from [2, Theorem 3.11.7], that
the operator A2,γ generates a once-integrated semigroup T 2

1 on X2(Ω).

Second, let 2 ≤ p < ∞ and let Ap,γ be the operator on Xp(Ω) defined
in (8.8). Let (u, 0) ∈ D(Ap,γ). Then u ∈ H1(Ω) and satisfies (8.9). If
p > N/2 ≥ (N − 1)/2, then elliptic regularity (see e.g. [41, Corollary 2.9])
shows that u ∈ C(Ω). Hence, D(Ap,γ) ⊂ C(Ω) × {0} and in particular

we have that D(Ap,γ) ⊂ Xp(Ω). If 2 ≤ p < N , then using again elliptic
elliptic regularity (see e.g. [8, Theorem 4.1 and Corollary 4.2]), we get that
that u ∈ Lp

?
(Ω) and u|∂Ω ∈ Lp?(∂Ω) where p? := pN/(N − p) ≥ p and

p? := p(N − 1)/(N − p) ≥ p. In any case, we have that D(Ap,γ) ⊂ Xp(Ω).

Hence, Ap,γ is the part of the resolvent positive operator A2,γ in Xp(Ω), and
hence, is also resolvent positive. It follows from [2, Theorem 3.11.7] that
the operator Ap,γ generates a once integrated semigroup T p1 on Xp(Ω). Since

D(Ap,γ)
Xp(Ω)

= Lp(Ω)× {0}, we have that the representation (8.10) follows
from the abstract result contained in [26, Proposition 2.4].

Finally, if 1 ≤ p < 2, then we obtain the result by using the consistency
properties of the semigroups (T0,p(t)) introduced above. The proof of the
claim is finished.

Using the above defined operator Ap,γ , we have that the fractional order
Problem (8.3) can be rewritten as an abstract Cauchy problem on the Banach
space Lp(Ω)× Lp(∂Ω) = Xp(Ω):{

Dαt (u(t), 0) = Ap,γ(u(t), 0) + (f(t), g(t)), t > 0,

(u(0), 0) = (u0, 0).
(8.13)

Then all the results in Theorem 7.5 hold for Problem (8.13) and hence, for
Problem 8.3 with here n = k = 1.

Next, we consider the space of continuous functions.

Example 8.2 (Non-homogeneous Neumann and Robin boundary
conditions on the space of continuous functions). Let Ω be as in Ex-
ample 8.1. We notice that the space C(Ω) does not have an order continuous
norm. Let A be the elliptic operator given in (8.2). Here, for 0 < α ≤ 1, we
consider the fractional diffusion equation

Dαt u(t, x) = Au(t, x) + f(t, x), t > 0, x ∈ Ω,
∂u(t, z)

∂νA
+ γ(z)u(t, z) = g(t, z), t > 0, z ∈ ∂Ω,

u(0, x) = u0(x), x ∈ Ω,

(8.14)
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where u0 ∈ C(Ω), f ∈ C([0,∞];C(Ω)) and g ∈ C([0,∞];C(∂Ω)) are given
functions. This problem in the case α = 1 has been investigated in [34]. We
define the operator A∞,γ on X∞(Ω) = C(Ω)× C(∂Ω) as follows:D(A∞,γ) :=

{
(u, 0) ∈ D(A2,γ) ∩ X∞(Ω) : Au ∈ C(Ω), ∂u

∂νA
∈ C(∂Ω)

}
A∞,β(u, 0) =

(
Au,− ∂u

∂νA
− γu|∂Ω

)
,

where A2,γ is the operator on X2(Ω) defined in (8.4). The operator A∞,γ is
a realization of the operator A with non-homogeneous Robin boundary con-
ditions and non-homogeneous Neumann boundary conditions if γ ≡ 0. By
definition, D(A∞,γ) ⊂ C(Ω)× {0}. By [33] (see also [41] for the case of the

Laplace operator), the space C(Ω)× {0} is invariant under the resolvent of
A∞,γ and its part A0

∞,γ in C(Ω)×{0} generates a strongly continuous semi-

group (T∞(t))t≥0 on C(Ω) × {0}. Hence, A∞,γ generates a once-integrated

semigroup (T∞1 (t))t≥0 on X∞(Ω) given for (f, g) ∈ X∞(Ω) and λ > 0 by

T∞1 (t)(f, g) = λ

∫ t

0
T∞(s)(λ−A)−1(f, g) ds+ [I − T∞(t)](λ−A)−1(f, g).

Using A∞,γ , we have that (8.14) can be rewritten as an abstract Cauchy

problem on the Banach space C(Ω)× C(∂Ω) = X∞(Ω):{
Dαt (u(t), 0) = A∞,γ(u(t), 0) + (f(t), g(t)), t > 0,

(u(0), 0) = (u0, 0).
(8.15)

Hence, then the results in Theorem 7.5 hold for Problem (8.14) and hence,
for Problem (8.15) with n = k = 1.

Next, we investigate the non-homogeneous Dirichlet boundary conditions.

Example 8.3 (Non-homogeneous Dirichlet boundary conditions on
the space of continuous functions). For simplicity we assume that Ω is
as in Example 8.1. To investigate the non-homogeneous Dirichlet boundary
conditions in a space of continuous functions, one has to work directly with
a realization A∞ of A with non-homogeneous Dirichlet boundary conditions
in a space of continuous functions because the Lp-regularity conditions on
the boundary data are not sufficient to obtain continuous solutions. For
0 < α ≤ 1, we consider the following fractional order diffusion equation

Dαt u(t, x) = Au(t, x) + f(t, x), t > 0, x ∈ Ω,

u(t, z) = g(t, z), t > 0, z ∈ ∂Ω,

u(0, x) = u0(x), x ∈ Ω,

(8.16)
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where u0 ∈ C(Ω), f ∈ C([0,∞];C(Ω)) and g ∈ C([0,∞];C(∂Ω)) are given
functions and A is the operator given in (8.2). Problem (8.16) in the case
α = 1 and A = ∆ (the Laplace operator) has been investigated in [2, Chapter
6]. We recall that C(Ω) does not have an order continuous norm. We define a
realization A∞ of the operator A with non-homogeneous Dirichlet boundary
conditions on X∞(Ω) := C(Ω)× C(∂Ω) by{

D(A∞) :=
{

(u, u|∂Ω) ∈ X∞(Ω) : u ∈ H1(Ω), Au ∈ C(Ω)
}
,

A∞(u, u|∂Ω) = (Au,−u|∂Ω) .

Then (8.16) can be rewritten as a Cauchy problem on X∞(Ω) as follows:{
Dαt (u(t), 0) = A∞(u(t), 0) + (f(t), g(t)), t > 0,

(u(0), 0) = (u0, 0).
(8.17)

It is well-known (see e.g. [2, Chapter 6]) that the operator A∞ does not
generate a once-integrated semigroup on X∞(Ω). It turns out that A∞ gen-
erates a twice integrated semigroup (T∞2 (t))t≥0 on X∞(Ω) (see [2, Chapter 3
and Chapter 6]). Hence, the results in Theorem 7.5 hold for Problem (8.17)
and hence, for Problem (8.16) with n = 2 and k = 1 if 0 < α ≤ 1/2 and
n = k = 2 if 1/2 < α ≤ 2.

To conclude the paper, we consider the time fractional order Schrödinger
equation.

Example 8.4 (The time fractional order Schrödinger equation).
First we consider the problem{

Dαt u(t, x) = i∆pu(t, x) + f(t, x), t > 0, x ∈ RN , 0 < α ≤ 1,

u(0, x) = u0(x), x ∈ RN ,
(8.18)

where ∆p is a realization of the Laplace operator on Lp(RN ), 1 ≤ p < ∞.
It is well-known (see [2, Theorem 8.3.9]) that the operator i∆p generates a

βp-times integrated semigroup on Lp(Ω) with βp := N
∣∣∣12 − 1

p

∣∣∣ if 1 < p <∞
and β1 >

N
2 if p = 1. This shows in particular that i∆2 generates a strongly

continuous semigroup on L2(Ω). Then the results in Theorem 7.5 hold for
Problem (8.18) with n = dβpe and k = dαβpe if 1 ≤ p < ∞, p 6= 2 and
n = k = 0 if p = 2.

Next, we consider the problem{
Dαt u(t, x) = eiθ∆pu(t, x) + f(t, x), t > 0, x ∈ RN , 0 < α < 1,

u(0, x) = u0(x), x ∈ RN ,
(8.19)
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where the angle θ satisfies π
2 < θ <

(
1− α

2

)
π. Let the operator Ap be given

by Ap := eiθ∆p. Then D(Ap) = W 2,p(RN ). We have shown in Example
4.10 that if 0 < α < 1

2 , then Ap does not generates a β-times integrated

semigroup in Lp(RN ) for any β ≥ 0, but Ap generates an (α, 1)-resolvent
family Sα on Lp(RN ) for every 0 < α < 1. Therefore, if 0 < α < 1

2 , then
one cannot use the concept of β-times integrated semigroup to solve Problem
(8.19). With the technique of resolvent families we are able to solve Problem
(8.19). More precisely, using Theorem 7.5, we have the following result.

• For every u0 ∈ W 2,p(RN ) and f ∈ W 1,1([0,∞);Lp(RN )), Problem
(8.19) has a classical solution u.
• For every u0 ∈ Lp(RN ) and f ∈ L1

loc([0,∞);Lp(RN )), Problem (8.19)
has a mild solution.
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