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Abstract. Using a generalization of the semigroup theory of linear operators,
we prove existence and uniqueness of S-asymptotically ω-periodic mild solu-
tions for a class of linear and semilinear fractional order differential equations
of the form

Dα+1
t u(t) + µDβ

t u(t)−Au(t) = f(t, u(t)), t > 0, 0 < α ≤ β ≤ 1, µ ≥ 0,

1. Introduction

Let X be a Banach space. A bounded continuous function u : [0,∞) → X is
said to be S-asymptotically ω-periodic if

lim
t→∞

[u(t+ ω)− u(t)] = 0.

This paper is devoted to study the existence of S-asymptotically ω-periodic mild
solutions for fractional order differential equations of the form

Dα+1
t u(t) + µDβ

t u(t)− Au(t) = f(t, u(t)), t > 0, (1.1)

with prescribed initial conditions u(0) and u′(0), and where A : D(A) ⊂ X → X
is sectorial of angle βπ/2, f is a vector-valued function, and Dγ

t denotes the
Caputo fractional derivative of order γ.

The literature concerning S-asymptotically ω-periodic functions with values in
Banach spaces is very new. Recently some interesting articles were published by
Henŕıquez et al. [10], [11], Nicola and Pierri [19], Cuevas and de Souza [5],[6] and
Cuevas and Lizama [7].

On the other hand, fractional order differential equations represent a subject
of increasing interest in different contexts and areas of research, see e.g. [2, 4, 12,
13, 15, 20, 21], the survey paper [9] and the references therein. Our motivation
to study equation (1.1) comes from recent investigations on the subject. Indeed,
in the article [17] the author studied existence and uniqueness of solutions for
the abstract equation (1.1) in the special case α = β and in the article [22] the
authors studied the nonlinear two-term time fractional diffusion wave equation
(1.1) with 0 < α < β − 1 and A = d2

dx2
.

In the paper [14], asymptotic behavior for mild solutions of (1.1) was studied,
whereas the recent article [1] analyzed the existence and uniqueness of pseudo
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asymptotic mild solutions which in particular includes the classes of pseudo peri-
odic, pseudo almost periodic and pseudo almost automorphic functions. However,
the investigation of existence and uniqueness of S-asymptotically ω-periodic solu-
tions was left open. The main objective of this paper is close this gap, establishing
the first results on this qualitative property for equation (1.1).

Our methods are as follows: In [14] the authors proved that it is possible to
give an abstract operator approach to equation (1.1) by defining first an ad-hoc
solution family of strongly continuous operators Sα,β(t) for (1.1) in case f ≡ 0.
It turns out, that it is a particular case of an (a, k)-regularized family [16] and
a generalization of the semigroup theory. By means of the use of this class of
operator-valued families, the solution for equation (1.1) can be written in terms
of a kind of variation of constants formula. It give us the necessary framework
to apply an operator theoretical approach in the analysis of S-asymptotically
ω-periodic solutions for the abstract fractional order differential equation (1.1).

We outline the plan of the paper as follows. In section 2, we recall the concept
of fractional order derivatives and some properties of (α, β)µ-regularized fami-
lies. In section 3 we consider the linear case, that is f(t, u(t)) = f(t) and show
existence and uniqueness of S-asymptotically ω-periodic solutions of our prob-
lem. The existence, uniqueness of S-asymptotically ω-periodic solutions for the
semi-linear problem is investigated in Section 4. Existence is proved by means
of the contraction mapping theorem. Finally, we conclude the paper by giving a
concrete example where the situation in the previous sections can be applied.

2. Preliminaries

Let α > 0, m = dαe and u : [0,∞)→ X, where X is a complex Banach space.
We denote by R+ the closed interval [0,∞). The Caputo fractional derivative of
u ∈ C(R+) of order α is defined by

Dα
t u(t) :=

∫ t

0

gm−α(t− s)u(m)(s)ds, t > 0,

where gβ(t) := tβ−1

Γ(β)
, t > 0, β > 0, and in case β = 0 we set g0(t) := δ0, the

Dirac measure concentrated at the origin. When α = n is integer, we define
Dn
t := dn

dtn
, n ∈ N.

We denote by

BC(X) := {f : R→ X : f is continuous, ||f ||∞ := sup
t∈R
||f(t)|| <∞},

the Banach space of X-valued bounded and continuous functions on R, with
natural norm.

Now we turn our attention to the family of function spaces built on X and
which will play a key role in our study.

Definition 2.1. [10] A function f ∈ BC(R+;X) is called S-asymptotically ω
periodic if there exists ω > 0 such that limt→∞[f(t + ω) − f(t)] = 0. In this
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case, we say that ω is an asymptotic period of f and that f is S-asymptotically
ω-periodic.

Denote by SAPω(X) the set of all such functions. We note that SAPω(X), is
a Banach space with the supnorm. In [10] is was shown the surprising fact that
the property limt→∞[f(t + ω) − f(t)] = 0 does not characterize asymptotically
ω-periodic functions, that is, bounded and continuous functions which admits the
decomposition f = g + h, where g is ω-periodic and limt→∞ h(t) = 0.

In order to give an operator theoretical approach to equation (1.1) we have the
following definition.

Definition 2.2. ([14]) Let µ ≥ 0 and 0 ≤ α, β ≤ 1 be given. Let A be a closed
linear operator with domain D(A) defined on a Banach space X. We call A the
generator of an (α, β)µ-regularized family if there exist ω ≥ 0 and a strongly
continuous function Sα,β : R+ → B(X) such that {λα+1 + µλβ : Reλ > ω} ⊂
ρ(A) and

H(λ)x := λα(λα+1 + µλβ − A)−1x =

∫ ∞
0

e−λtSα,β(t)xdt, Reλ > ω, x ∈ X.

Because of the uniqueness theorem for the Laplace transform, if µ = 0 and
α = 0, this corresponds to the case of a C0-semigroup whereas the case µ =
0, α = 1 corresponds to the concept of cosine family. For more details on the
Laplace transform approach to semigroups and cosine functions, we refer to the
monograph [3].

Let us recall that a closed and densely defined operator A is said to be ω-
sectorial of angle θ if there exists θ ∈ [0, π/2) and ω ∈ R such that its resolvent
exists in the sector ω + Sθ := {ω + λ : λ ∈ C, |arg(λ)| < π

2
+ θ} \ {ω}, and

||(λ− A)−1|| ≤ M

|λ− ω|
, λ ∈ ω + Sθ. (2.1)

These are generators of holomorphic semigroups. In case ω = 0 we merely say
that A is sectorial of angle θ. We should mention that in the general theory of
sectorial operators, it is not required that (2.1) holds in a sector of angle π/2.
Our restriction corresponds to the class of operators used in this paper.

Sufficient conditions to obtain generators of an (α, β)µ-regularized family are
given in the following result.

Theorem 2.3. ([14]) Let 0 < α ≤ β ≤ 1, µ > 0 and A be a ω sectorial operator
of angle βπ/2. Then A generates a bounded (α, β)µ-regularized family.

We next consider the linear fractional differential equation

Dα+1
t u(t) + µDβ

t u(t)− Au(t) = Dα
t f(t), t ≥ 0, 0 < α ≤ β ≤ 1, µ ≥ 0, (2.2)

with initial conditions u(0) = x, u′(0) = y and A is a ω-sectorial operator of
angle βπ/2.

Recall that a function u ∈ C1(R+;X) is called a strong solution of (2.2) on R+

if u(t) ∈ D(A) and (2.2) holds on R+. We have the following result.
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If A is ω-sectorial of angle βπ/2 then, by [14, Cor.3.4] and Theorem 2.3, a
strong solution for (2.2) always exists and is given by:

u(t) = Sα,β(t)x+ (g1 ∗ Sα,β)(t)y + µ(g1+α−β ∗ Sα,β(t))x+ (Sα,β ∗ f)(t), (2.3)

where 0 < α ≤ β ≤ 1, µ > 0; x, y ∈ D(A); f : R+ → D(A) and Sα,β(t) is the
(α, β)µ-regularized family generated by A. If merely x, y ∈ X and f : R+ → X
instead of the domain of A, we say that u given by the formula (2.3) is a mild
solution of the linear equation (2.2).

In order to study the pseudo asymptotic behavior of mild solutions, we need the
following result on the integrability of the (α, β)µ-regularized family generated by
A.

Theorem 2.4. ([14]) Let 0 < α ≤ β ≤ 1, µ > 0 and ω < 0. Assume that A
is an ω-sectorial operator of angle βπ/2, then A generates an (α, β)µ-regularized
family Sα,β(t) satisfying the estimate

||Sα,β(t)|| ≤ C

1 + |ω|(tα+1 + µtβ)
, t ≥ 0, (2.4)

for some constant C > 0 depending only on α, β.

3. S-asymptotically ω periodic solutions: The linear case.

We can prove the following theorem which is the main result in this section.

Theorem 3.1. Let 0 < α ≤ β ≤ 1 and µ > 0. Assume that A is an ω-sectorial
operator of angle βπ/2 with ω < 0. Then for each f ∈ SAPω(X) there exists a
unique mild solution u of equation (2.2) such that u ∈ SAPω(X).

Proof. Let f ∈ SAPω(X) be given. By Theorem 2.4, A generates a uniformly
integrable (α, β)µ-regularized family Sα,β(t) on the Banach space X, and the
unique mild solution for (2.2) is given by (2.3), that is;

u(t) = Sα,β(t)x+ (g1 ∗ Sα,β)(t)y + µ(g1+α−β ∗ Sα,β(t))x+ (Sα,β ∗ f)(t),

where 0 < α ≤ β ≤ 1;µ > 0 and x, y ∈ X. An adaptation of the proof of
[8] shows that Sα,β ∗ f ∈ SAPω(X). On the other hand, note that by (2.4)
we have limt→∞ ‖Sα,β(t)‖ = 0. Hence Sα,β ∈ SAPω(X). We now prove that
g1 ∗ Sα,β ∈ SAPω(X). Indeed, by (2.4) we have supt>τ ||tSα,β(t)|| < ∞, for each

τ > 0. Since A is an ω-sectorial of angle β π
2

then ||Ŝα,β(λ)|| → 0 as λ → 0.
Thus, by the vector-valued Hardy-Littlewood theorem (see [3, Theorem 4.2.9])
we conclude that ||(g1 ∗ Sα,β)(t)|| → 0 as t → ∞ and the claim is proved. It
remains only to show that g1+α−β ∗ Sα,β ∈ SAPω(X) for α < β. To see this, we
estimate ||g1+α−β ∗ Sα,β(t)|| as follows. Let 0 < ε < β − α be given, then

||g1+α−β ∗ Sα,β(t)|| = ||Γ(β − α− ε)
∫ t

0

g1+α−β(t− τ)gβ−α−ε(τ)τα−β+ε+1Sα,β(τ)dτ ||

≤ Γ(β − α− ε)
∫ t

0

g1+α−β(t− τ)gβ−α−ε(τ)τα−β+ε+1||Sα,β(τ)||dτ
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where, thanks to (2.4), we have that

Γ(β − α− ε)τα−β+ε+1||Sα,β(τ)|| ≤ Mτα−β+ε−1

1 + |ω|τα+1
=

Mτ−β+ε

1
τα+1 + |ω|

, τ > 0.

Since ε < β, there exists a constant C > 0 such that τα−β+ε+1||Sα,β(τ)|| ≤ C.
Therefore,

||g1+α−β ∗ Sα,β(t)|| ≤ C

∫ t

0

g1+α−β(t− τ)gβ−α−ε(τ)dτ = Cg1−ε(t) = Ct−ε,

which shows that ‖g1+α−β ∗ Sα,β(t)‖ → 0 as t → ∞. Therefore g1+α−β ∗ Sα,β ∈
SAPω(X) and finally, we have shown that u ∈ SAPω(X). �

4. S-asymptotically ω periodic solutions: The semilinear case.

Define the Nemytskii superposition operator N (ϕ)(·) := f(·, ϕ(·)) for ϕ ∈
SAPω(X). We define the set SAPω(R+ × X;X) to consist of all functions f :
R+ ×X → X such that f(·, x) ∈ SAPω(X) uniformly for each x ∈ K, where K
is any bounded subset of X.

In what follows we study existence and uniqueness of solutions in SAPω(X)
for the semi-linear fractional order differential equation

Dα+1
t u(t) + µDβ

t u(t)− Au(t) = Dα
t f(t, u(t)), t ≥ 0, 0 < α ≤ β ≤ 1, µ > 0,

(4.1)
where A is an ω-sectorial operator of angle βπ/2 with ω < 0, u(0) = x and
u′(0) = y.

In view of the linear case, the following definition of mild solution is natural.
Note that in the borderline case µ = 0 and α = 1 it corresponds to the notion
of mild solution for the semi-linear problem u′′(t) = Au(t) + f(t, u(t)) under the
hypothesis that A is the generator of a cosine family C(t). In fact, in this case:
S1,0(t) ≡ C(t) and the associate sine family is equal to (g1 ∗ S1,0)(t).

Definition 4.1. Suppose 0 < α ≤ β ≤ 1, µ > 0. A function u : R+ → X is said
to be a mild solution to Equation (4.1) if it satisfies

u(t) = Sα,β(t)x+(g1 ∗Sα,β)(t)y+µ(g1+α−β ∗Sα,β(t))x+

∫ t

0

Sα,β(t−s)f(s, u(s))ds,

(4.2)
for each t ∈ R+ and x, y ∈ X.

We next give a result on existence of mild solutions for the semi-linear problem.

Theorem 4.2. Let 0 < α ≤ β ≤ 1 and µ > 0. Assume that A is an ω-sectorial
operator of angle βπ/2 and ω < 0. Let f : R+ × X → X be a function on
SAPω(R+ × X;X) and assume that there exists a bounded integrable function
Lf : R+ → R+ satisfying

||f(t, x)− f(t, y)|| ≤ Lf (t)||x− y||, (4.3)

for all x, y ∈ X and t ≥ 0. Then Equation (4.1) has a unique mild solution
u ∈ SAPω(X).
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Proof. Let Sα,β(t) be the (α, β)µ-regularized family generated by A (cf. Theorem
2.4). We define the operator Kα,β on the space SAPω(X) by

(Kα,βu)(t) = Sα,β(t)x+ (g1 ∗ Sα,β)(t)y + µ(g1+α−β ∗ Sα,β(t))x

+

∫ t

0

Sα,β(t− s)f(s, u(s))ds. (4.4)

From the proof of Theorem 3.1, we know that Sα,β(t)x+(g1∗Sα,β)(t)y+µ(g1+α−β∗
Sα,β(t))x ∈ SAPω(X). Moreover by [18, Theorem 4.1] we conclude that the func-
tion s → f(s, u(s)) is in SAPω(X). Then, by hypothesis and in the same way

as in the proof of Theorem 3.1, we arrive at the conclusion that

∫ t

0

Sα,β(t −

s)f(s, u(s))ds is also in SAPω(X) and thus Kα,β is well defined. Let u, v be in
SAPω(X). Observe that

||(Kα,βu)(t)− (Kα,βv)(t)|| ≤
∫ t

0

‖Sα,β(t− s)‖‖f(s, u(s))− f(s, v(s))‖ds

≤
∫ t

0

‖Sα,β(t− s)‖Lf (s)‖u(s)− v(s)‖ds

≤ ‖Sα,β‖1‖u− v‖∞
∫ t

0

Lf (s)ds

≤ ‖Sα,β‖1‖u− v‖∞‖Lf‖1.

By induction, we find the following estimate:

||(Kn
α,βu)(t)− (Kn

α,βv)(t)|| ≤ ||Sα,β||
n
1

(n− 1)!
||u− v||∞

∫ t

0

Lf (s)

(∫ s

0

Lf (τ)dτ

)n−1

ds

=
||Sα,β||n1
n!

||u− v||∞
(∫ t

0

Lf (τ)dτ

)n
≤ ||Sα,β||

n
1

n!
||u− v||∞||Lf ||n1 .

Since
||Sα,β ||n1

n!
||Lf ||n1 < 1 for n sufficiently large, applying the contraction principle

we conclude that F has a unique fixed point u ∈ SAPω(X) such that (Kα,βu)(t) =
u(t). �

To finish, we present one example, which do not aim at generality but indicate
how our theorems can be applied to concrete problems.

Example 4.3. Suppose that b ∈ L1(R+) ∩ SAPω(R+). Then the equation

Dα+1
t u(x, t) + µDβ

t u(x, t) =
∂2

∂x2
u(x, t) + τu(x, t)

+ Dα
t [b(t) sin(u(t))], t > 0, 0 < α ≤ β ≤ 1 (4.5)

where τ < 0 is fixed, with initial and zero boundary conditions has a unique mild
solution u(t, x) such that u(·, x) belongs to the space SAPω(X)
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Indeed, the equation (4.5) is of the form (4.1) with Au = ∂2

∂x2
u+τu and f(t, u) =

b(t) sin(u(t)). Setting the Dirichlet boundary conditions u(0, t) = u(2π, t) = 0 we
consider A with domain D(A) := {u ∈ L2[0, 2π] : u′′ ∈ L2[0, 2π];u(0) = u(2π) =
0} and f(t, x) = b(t) sin(x). Then it is wellknown that the operator A is ω sectorial
with ω = τ < 0 and angle π/2 (and hence of angle βπ/2 for all β ≤ 1). On the
other hand, since b ∈ L1(R+) we have

‖f(t, u)− f(t, v)‖2
2 =

∫ π

0

|b(t)|2| sin(u(s))− sin(v(s))|2ds ≤ |b(t)|2‖u− v‖2
2,

and the condition (4.3) holds. Hence the hypothesis of Theorem 4.2 are satisfied
and thus the conclusion of the example follows.
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