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Abstract. Given a ∈ L1(R) and A the generator of an L1-integrable family of bounded
and linear operators defined on a Banach space X, we prove the existence of almost
automorphic solution to the semilinear integral equation u(t) =

∫ t

−∞ a(t − s)[Au(s) +

f(s, u(s))]ds for each f : R×X → X almost automorphic in t, uniformly in x ∈ X, and
satisfying diverse Lipschitz type conditions. In the scalar case, we prove that a ∈ L1(R)
positive, nonincreasing and log-convex is already sufficient.

1. Introduction

We study in this paper the almost automorphicity of semilinear integral equations of
the form

(1.1) u(t) =
∫ t

−∞
a(t− s)[Au(s) + sng(s, u(s))]ds, t ∈ R, n ∈ Z+

where a ∈ L1(R), A : D(A) ⊂ X → X is the generator of an integral resolvent family
defined on a complex Banach space X and g : R × X → X is an almost automorphic
function satisfying suitable Lipschitz conditions.

A continuous function f : R→ X is said to be almost automorphic if for every sequence
of real numbers (s′n)n∈N there exists a subsequence (sn)n∈N ⊂ (s′n)n∈N such that

g(t) := lim
n→∞ f(t + sn)

is well defined for each t ∈ R, and

f(t) = lim
n→∞ g(t− sn), for each t ∈ R.

Almost automorphicity is a generalization of the classical concept of an almost periodic
function. It was introduced in the literature by S. Bochner and recently studied by several
authors, including [4, 6, 8, 10, 14, 19] among others. A complete description of their
properties and further applications to evolution equations can be found in the monographs
[20] and [21] by G. M. N’Guérékata. Observe that equation (1.1) can be viewed as the
limiting equation for the Volterra equation

(1.2) u(t) =
∫ t

0
a(t− s)[Au(s) + sng(s, u(s))]ds, t ≥ 0, n ∈ Z+,
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see [23, Chapter III, Section 11.5] to obtain details on this assertion.
Sufficient conditions for the existence of almost automorphic solutions of linear and

nonlinear evolution equations have been studied in several papers in recent years (see
[19, 10, 9, 14, 1, 4] and [6] ).

Equation (1.1) arises in the study of heat flow in materials of fading memory type (see
[7] and [22]). While the study of the almost automorphic solutions of (1.1) in the particular
case a(t) = tα−1/Γ(α) with 1 ≤ α ≤ 2 was studied in [1], to the knowledge of the authors
no results yet exist for the general class of integral equations considered in this paper.

Our plan is as follows: In Section 2, we introduce some preliminaries on integral resolvent
families. In section 3, we treat the linear case

(1.3) u(t) =
∫ t

−∞
a(t− s)[Au(s) + snf(s)]ds, t ∈ R, n ∈ Z+

and prove our first main result. Section 4 is devoted to the semilinear equation

(1.4) u(t) =
∫ t

−∞
a(t− s)[Au(s) + f(s, u(s))]ds, t ∈ R.

We prove existence of a unique almost automorphic mild solution to (1.4) under the
assumption f is almost automorphic and that some Lipchitz condition on f is satisfied.

2. Preliminaries

Recall that the Laplace transform of a function f ∈ L1
loc(R+, X) is defined by

L(f)(λ) := f̂(λ) :=
∫ ∞

0
e−λtf(t)dt, Reλ > ω,

if the integral is absolutely convergent for Reλ > ω. In order to give an operator theoretical
approach to equation (1.1) we recall the following definition (cf. [18]).

Definition 2.1. Let A be a closed and linear operator with domain D(A) defined on a
Banach space X. We call A the generator of an integral resolvent if there exists ω ≥ 0 and
a strongly continuous function S : R+ → B(X) such that {1/â(λ) : Reλ > ω} ⊂ ρ(A)
and

(
1

â(λ)
I −A)−1x =

∫ ∞

0
e−λtS(t)xdt, Reλ > ω, x ∈ X.

In this case, S(t) is called the integral resolvent family generated by A.

The concept of integral resolvent, as defined above, is closely related with the concept of
resolvent family (see Prüss [23, Chapter I]). A closed but weaker definition was formulated
by Prüss [23, definition 1.6]. For the scalar case, where there is a large bibliography, we
refer to the monograph by Gripenberg, Londen and Staffans [12], and references therein.

Because of the uniqueness of the Laplace transform, an integral resolvent family with
a(t) ≡ 1 is the same as a C0-semigroup whereas an integral resolvent family with a(t) = t
corresponds to the concept of sine family, see [2, Section 3.15].

We note that integral resolvent families are a particular case of (a, k)-regularized families
introduced in [15]. These are studied in a series of several papers in recent years (see [16],
[17], [24]). According to [15] an integral resolvent family S(t) corresponds to a (a, a)-
regularized family.
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Notably, integral resolvent families are also present in [5, p.62] (see formula (4.33)) in
the particular case a(t) = tα−1/Γ(α) and where some properties are studied in the context
of vector-valued Lp(R, X) spaces.

As in the situation of C0-semigroups we have diverse relations of an integral resolvent
and its generator. The following result is a direct consequence of [15, Proposition 3.1 and
Lemma 2.2].

Proposition 2.2. Let S(t) be an integral resolvent family on X with generator A. Then
the following holds:

(a) S(t)D(A) ⊂ D(A) and AS(t)x = S(t)Ax for all x ∈ D(A), t ≥ 0;

(b) Let x ∈ D(A) and t ≥ 0. Then

(2.1) S(t)x = a(t)x +
∫ t

0
a(t− s)AS(s)xds.

(c) Let x ∈ X and t ≥ 0. Then
∫ t
0 a(t− s)S(s)xds ∈ D(A) and

S(t)x = a(t)x + A

∫ t

0
a(t− s)S(s)xds.

In particular, S(0) = a(0).

If an operator A with domain D(A) is the infinitesimal generator of an integral resolvent
family S(t) and a(t) is a continuous, positive and nondecreasing function which satisfies

lim
t→0+

||S(t)||
a(t)

< ∞ , then for all x ∈ D(A) we have

Ax = lim
t→0+

S(t)x− a(t)x
(a ∗ a)(t)

,

see [17, Theorem 2.1]. For example, the case a(t) ≡ 1 corresponds to the generator of a
C0-semigroup and a(t) = t actually corresponds to the generator of a sine family.

A characterization of generators of integral resolvent families, analogous to the Hille-
Yosida Theorem for C0 semigroups, can be directly deduced from [15, Theorem 3.4].
Results on perturbation, approximation, representation as well as ergodic type theorems
can be also deduced from the more general context of (a, k) regularized resolvents (see
[16, 17] and [24]).

3. Almost Automorphic Solutions

In this section we consider the existence and uniqueness of almost automorphic solutions
to the evolution equation

(3.1) u(t) =
∫ t

−∞
a(t− s)[Au(s) + sng(s)]ds, t ∈ R, n ∈ Z+

where A is the generator of an integral resolvent family and a ∈ L1(R).
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As a consequence of the definition of an almost automorphic function given in the
introduction, the following properties hold (cf [21]) : let f, g : R → X be almost auto-
morphic functions and let λ ∈ R, then f + g, λf and fλ are almost automorphic, where
fλ(t) := f(t + λ). Moreover, the range R(f) of f is relatively compact, therefore it is
bounded. Almost automorphic functions constitute a Banach space AA(X) when it is
endowed with the sup norm:

||f ||∞ := sup
t∈R

||f(t)||.
The following result on the almost automorphicity of the convolution is the key for the

results of this paper. It can be proved by the simple argument of [5, Proposition 2.3]. See
also [6, Theorem 2.1] or [1, Lemma 3.1] for a detailed proof.

Lemma 3.1. Let {S(t)}t≥0 ⊂ B(X) be a strongly continuous family of bounded and linear
operators such that

‖S(t)‖ ≤ φ(t) for all t ∈ R+ with φ ∈ L1(R+).

If f : R→ X is an almost automorphic function then
∫ t

−∞
S(t− s)f(s) ds ∈ AA(X).

Proposition 3.2. Let a ∈ L1(R). Assume that A generates an integral resolvent family
{S(t)}t≥0 on X, which is in addition integrable. If f is almost automorphic and takes
values on D(A) then the unique bounded solution of the problem

(3.2) u(t) =
∫ t

−∞
a(t− s)[Au(s) + f(s)]ds, t ∈ R,

is almost automorphic and is given by

u(t) =
∫ t

−∞
S(t− s)f(s)ds, t ∈ R.

Proof. Since f(t) ∈ D(A) for all t ∈ R, we obtain u(t) ∈ D(A) for all t ∈ R (see [23,
Proposition 1.2]). Then by (2.1) and Fubini’s theorem we obtain

∫ t
−∞ a(t− s) Au(s) ds =

u(t)− ∫ t
−∞ a(t− s) f(τ) dτ . The statement follows by Lemma 3.1. ¤

Remark 3.3. A complete discussion on integrable integral resolvents is given in [23, Chapter
3, section 10].

If wn(t) := (1 + |t|)n, n ∈ Z+, t ∈ R and f : R→ X we set

||f ||wn,∞ := ||f/wn||∞.

We consider the following weighted classes (see [4])

AAwn(X) := {wnf : f ∈ AA(X)} and Cwn,0(R, X) := {wnf : f ∈ C0(R; X)}.
Then one can check that AAwn(X) and Cwn,0(R, X) are Banach spaces endowed with the
norm || · ||wn,∞. Moreover, it was proved in [4] that AAwn(X) + Cwn,0(R, X) is a closed
subspace of BCwn(R, X) and that the sum is (topologically) direct, see [4, Theorem 1.6]
and the remark before Definition 3.2 in the cited paper.

The following is the main result of this section. Their proof follows the same lines of [4,
Theorem 4.3] (see also [1]), but we give it here for the sake of completeness.
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Theorem 3.4. Let n ∈ Z+. Assume that A generates an integral resolvent family {S(t)}t≥0

satisfying

(3.3) ‖tkS(t)‖ ≤ φ(t), t ∈ R+, with φ ∈ L1(R+)

for all k = 0, 1, ..., n. Let f ∈ AA(X) taking values on D(A). Then the equation

u(t) =
∫ t

−∞
a(t− s)[Au(s) + snf(s)]ds, t ∈ R,

has a unique solution u ∈ AAwn(X)⊕ Cwn,0(R, X).

Proof. Let u(t) =
∫ ∞

0
S(s)(t− s)nf(t− s) ds then

∫ ∞

0
S(s)(t− s)nf(t− s) ds = tn

∫ ∞

0
S(s)f(t− s) ds

+
n∑

k=1

(−1)k

(
n
k

)
tn−k

∫ ∞

0
skS(s)f(t− s) ds

=: u1(t) + u2(t).

(in case n = 0 we take u2(t) ≡ 0). By Lemma 3.1, u1 ∈ AAwn(X). We will show that
u2 ∈ Cwn,0(R, X). Indeed, by (3.3) we have skS(·) ∈ L1(R+,B(X)) for all k = 0, 1, ..., n.
So ∥∥∥∥

∫ ∞

0
skS(s)f(t− s) ds

∥∥∥∥ ≤
∫ ∞

0
‖skS(s)f(t− s)‖ ds ≤ ‖f‖∞||φk||1

for all k = 0, 1, ..., n. Since lim
|t|→∞

tr

(1 + |t|)n
= 0, we have

tr
∫ ∞

0
skS(s)f(t− s) ds ∈ Cwn,0(R, X), 0 ≤ r < n

and this shows u2 ∈ Cwn,0(R, X). ¤

Taking n = 0 and X = R we obtain the following result for the scalar case.

Corollary 3.5. Let f : R → R be an almost automorphic function, a ∈ L1(R) and let
ρ > 0 be a real number. Then the equation

(3.4) u(t) =
∫ t

−∞
a(t− s)[−ρu(s) + f(s)]ds, t ∈ R,

has an almost automorphic solution given by

u(t) =
∫ t

−∞
Sρ(t− s)f(s)ds, t ∈ R,

whenever Sρ(t), being the solution of the one dimensional equation

(3.5) Sρ(t) = a(t)− ρ

∫ t

0
a(t− s)Sρ(s)ds,

satisfy |Sρ(t)| ≤ φρ(t), with φρ ∈ L1(R+).
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Example 3.6. Consider a(t) = tα−1

Γ(α)e
−βt where β > 0 and 1 < α < 2. Then we can check

that
Sρ(t) = tα−1Eα,α(−ρt)e−βt

where Eα,α denotes the generalized Mittag-Leffler function (see e.g. [11]) which is defined
by

Eα,β(z) :=
∞∑

n=0

zn

Γ(αn + β)
α, β > 0, z ∈ C.

Using the explicit description of Sρ(t)eβt given in [1, Corollary 3.7] we can show that
|Sρ(t)| ≤ φρ(t), with φρ ∈ L1(R+). We conclude that the equation

(3.6) u(t) =
∫ t

−∞

(t− s)α−1

Γ(α)
e−β(t−s)[−ρu(s) + f(s)]ds, t ∈ R,

has an almost automorphic solution whenever f is almost automorphic.

Notably, the following result provide a wide class of kernels a(t) such that the condition
|Sρ(t)| ≤ φρ(t), with φρ ∈ L1(R+) of Corollary (3.5) holds.

Corollary 3.7. Let f : R→ R be an almost automorphic function and let ρ > 0 be a real
number. Suppose a ∈ L1(R) is positive, nonincreasing and log-convex, then

a) There is Sρ ∈ L1(R+) ∩ C(R+) such that equation (3.5) is satisfied;
b) The equation

(3.7) u(t) =
∫ t

−∞
a(t− s)[−ρu(s) + f(s)]ds, t ∈ R,

has a mild almost automorphic solution given by

u(t) =
∫ t

−∞
Sρ(t− s)f(s)ds, t ∈ R.

Proof. Part a) follows by [23, Lemma 4.1, p.98] and then part b) is a consequence of the
previous corollary.

¤

4. Semilinear Integral Equations on the Line

In this section we study the semilinear equation

(4.1) u(t) =
∫ t

−∞
a(t− s)[Au(s) + f(s, u(s))]ds, t ∈ R.

Definition 4.1. Let A be the generator of an integral resolvent family {S(t)}t≥0. A
continuous function u : R→ X satisfying the integral equation

(4.2) u(t) =
∫ t

−∞
S(t− s)f(s, u(s))ds, for all t ∈ R,

is called a mild solution on R to the equation (4.1).
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Theorem 4.2. Assume that A generates an integral resolvent family {S(t)}t≥0 such that

‖S(t)‖ ≤ φ(t), for all t ≥ 0, with φ ∈ L1(R+).

Let f : R×X → X be almost automorphic in t uniformly in x ∈ X and satisfy a Lipschitz
condition in x uniformly in t, that is,

‖f(t, x)− f(t, y)‖ ≤ L‖x− y‖, for all x, y ∈ X.

Then

(4.3) u(t) =
∫ t

−∞
a(t− s)[Au(s) + f(s, u(s))]ds, t ∈ R,

has a unique almost automorphic mild solution whenever L < ||φ||−1
1 .

Proof. We define the operator F : AA(X) 7→ AA(X) by

(4.4) (Fϕ)(t) :=
∫ t

−∞
S(t− s)f(s, ϕ(s)) ds, t ∈ R.

In view of [13, Lemma 2.2] (see also [21]) and Lemma 3.1, F is well defined. Then for
ϕ1, ϕ2 ∈ AA(X) we have:

‖Fϕ1 − Fϕ2‖∞ = sup
t∈R

∥∥∥∥
∫ t

−∞
S(t− s)[f(s, ϕ1(s))− f(s, ϕ2(s))]ds

∥∥∥∥

≤ L sup
t∈R

∫ ∞

0
‖S(τ)‖‖ϕ1(t− τ)− ϕ2(t− τ)‖dτ

≤ L‖ϕ1 − ϕ2‖∞
∫ ∞

0
φ(τ)dτ.

This proves that F is a contraction, so by the Banach fixed point theorem there exists a

unique u ∈ AA(X), such that Fu = u, that is u(t) =
∫ t

−∞
S(t− s)f(s, u(s))ds. ¤

An immediate consequence of Theorem 4.2 and Corollary 3.7 is the following remarkable
result.

Corollary 4.3. Let ρ > 0 be a real number. Suppose a ∈ L1(R) is positive, nonincreasing
and log-convex and let f : R × R → R be almost automorphic in the first variable uni-
formly with respect to the second variable, and satisfies a Lipschitz condition in the second
variable, that is,

‖f(t, x)− f(t, y)‖ ≤ L‖x− y‖, for all x, y ∈ R.

Then there is Sρ ∈ L1(R+) ∩ C(R+) satisfying the linear equation (3.5). Moreover, the
semilinear equation

u(t) =
∫ t

−∞
a(t− s)[−ρu(s) + f(s, u(s))]ds, t ∈ R,

has a unique almost automorphic mild solution whenever L < ||Sρ||−1
1 .

A different Lipschitz condition is provided in the following result.
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Theorem 4.4. Assume that A generates an integral resolvent family {S(t)}t≥0 such that

‖S(t)‖ ≤ φ(t), for all t ≥ 0, with φ ∈ L1(R+).

Let f : R × X → X be almost automorphic in t uniformly in x ∈ X and satisfy the
Lipschitz condition

(4.5) ‖f(t, x)− f(t, y)‖ ≤ L(t)‖x− y‖, for all x, y ∈ X, t ∈ R,

where L ∈ L1(R). Then equation (4.1) has a unique almost automorphic mild solution.

Proof. We define the operator F as in (4.4). Let ϕ1, ϕ2 be in AA(X) and denote C :=
supt∈R ||S(t)||. We have:

||(Fϕ1)(t)− (Fϕ2)(t)|| =
∥∥∥∥
∫ t

−∞
S(t− s)[f(s, ϕ1(s))− f(s, ϕ2(s))]ds

∥∥∥∥

≤
∫ t

−∞
L(s)‖S(t− s)‖‖ϕ1(s)− ϕ2(s)‖ds

≤ C‖ϕ1 − ϕ2‖∞||L||1.
In general we get

||(Fnϕ1)(t)− (Fnϕ2)(t)|| ≤ Cn

(n− 1)!

(∫ t

−∞
L(s)

(∫ s

−∞
L(τ)dτ

)n−1

ds

)
||ϕ1 − ϕ2||∞

≤ Cn

n!

(∫ t

−∞
L(τ)dτ

)n

||ϕ1 − ϕ2||∞

≤ (C||L||1)n

n!
||ϕ1 − ϕ2||∞.

Hence, since (C||L||1)n

n! < 1 for n sufficiently large, by the contraction principle F has a
unique fixed point u ∈ AA(X). ¤

We notice that in (4.5) different type of conditions can be considered for L(t). This fact
is studied in the following results.

Theorem 4.5. Assume that A generates an integral resolvent family {S(t)}t≥0 such that

‖S(t)‖ ≤ φ(t), for all t ≥ 0, with φ ∈ L1(R+).

Let f : R × X → X be almost automorphic in t uniformly in x ∈ X and satisfy the
Lipschitz condition

‖f(t, x)− f(t, y)‖ ≤ L(t)‖x− y‖, for all x, y ∈ X, t ∈ R,

where the integral
∫ t

−∞
L(s)ds exists for all t ∈ R. Then equation (4.1) has a unique almost

automorphic mild solution.

Proof. Define a new norm |||ϕ|| := supt∈R{v(t)||ϕ(t)||}, where v(t) := e−k
∫ t
−∞ L(s)ds and

k is a fixed positive constant greater than C := supt∈R ||S(t)||. Let ϕ1, ϕ2 be in AA(X),
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then we have

v(t)||(Fϕ1)(t)− (Fϕ2)(t)|| = v(t)
∥∥∥∥
∫ t

−∞
S(t− s)[f(s, ϕ1(s))− f(s, ϕ2(s))]ds

∥∥∥∥

≤ C

∫ t

−∞
v(t)L(s)‖ϕ1(s)− ϕ2(s)‖ds

≤ C

∫ t

−∞
v(t)v(s)−1L(s)v(s)‖ϕ1(s)− ϕ2(s)‖ds

≤ C|||ϕ1 − ϕ2|||
∫ t

−∞
v(t)v(s)−1L(s)ds

=
C

k
|||ϕ1 − ϕ2|||

∫ t

−∞
kek

∫ s
t L(τ)dτL(s)ds

=
C

k
|||ϕ1 − ϕ2|||

∫ t

−∞

d

ds

(
ek

∫ s
t L(τ)dτ

)
ds

=
C

k
[1− e−k

∫ t
−∞ L(τ)dτ ]|||ϕ1 − ϕ2|||

≤ C

k
|||ϕ1 − ϕ2|||.

Hence, since C/k < 1, F has a unique fixed point u ∈ AA(X).
¤

Theorem 4.6. Assume that A generates an integral resolvent family {S(t)}t≥0 such that

‖S(t)‖ ≤ φ(t), for all t ≥ 0,

where φ : R+ → R+ is a decreasing function such that φ0 :=
∑∞

m=0 φ(m) < ∞. Let
f : R × X → X almost automorphic in t uniformly in x ∈ X satisfying the Lipschitz
condition

‖f(t, x)− f(t, y)‖ ≤ L(t)‖x− y‖, for all x, y ∈ X, t ∈ R,

where L := sup
t∈R

∫ t+1

t
L(s)ds < ∞ Then equation (4.1) has a unique almost automorphic

mild solution whenever Lφ0 < 1.

Proof. Since φ is a decreasing function such that
∑∞

m=0 φ(m) < ∞ we have that φ ∈
L1(R+) and hence S(t) is integrable. Let ϕ1, ϕ2 be in AA(X), then for the same operator
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F defined in (4.4), we have

||(Fϕ1)(t)− (Fϕ2)(t)|| =
∥∥∥∥
∫ t

−∞
S(t− s)[f(s, ϕ1(s))− f(s, ϕ2(s))]ds

∥∥∥∥

≤
∫ t

−∞
L(s)‖S(t− s)‖‖ϕ1(s)− ϕ2(s)‖ds

≤ (
∞∑

m=0

∫ t−m

t−(m+1)
L(s)‖S(t− s)‖ds)||ϕ1 − ϕ2||∞

≤ (
∞∑

m=0

∫ t−m

t−(m+1)
L(s)φ(t− s)ds)||ϕ1 − ϕ2||∞

≤ (
∞∑

m=0

φ(m)
∫ t−m

t−(m+1)
L(s)ds)||ϕ1 − ϕ2||∞

≤ L(
∞∑

m=0

φ(m))||ϕ1 − ϕ2||∞ = Lφ0||ϕ1 − ϕ2||∞,

which finish the proof.
¤
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