ALMOST AUTOMORPHIC SOLUTIONS TO INTEGRAL EQUATIONS
ON THE LINE
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ABSTRACT. Given a € L'(R) and A the generator of an L'-integrable family of bounded
and linear operators defined on a Banach space X, we prove the existence of almost
automorphic solution to the semilinear integral equation wu(t) = ffoo a(t — s)[Au(s) +
f(s,u(s))]ds for each f: R x X — X almost automorphic in ¢, uniformly in = € X, and
satisfying diverse Lipschitz type conditions. In the scalar case, we prove that a € Ll(]R)
positive, nonincreasing and log-convex is already sufficient.

1. INTRODUCTION

We study in this paper the almost automorphicity of semilinear integral equations of
the form

t
(1.1) u(t) = / a(t — s)[Au(s) + s"g(s,u(s))]ds, teR, neZy
—0o0

where a € L'(R), A : D(A) C X — X is the generator of an integral resolvent family
defined on a complex Banach space X and g : R x X — X is an almost automorphic
function satisfying suitable Lipschitz conditions.

A continuous function f : R — X is said to be almost automorphic if for every sequence
of real numbers (s),),en there exists a subsequence (s,)nen C (8], )nen such that

gt) == Tim f(t+ s)
n—oo
is well defined for each ¢ € R, and
f(t)= lim g(t —s,), foreachteR.
n—oo

Almost automorphicity is a generalization of the classical concept of an almost periodic
function. It was introduced in the literature by S. Bochner and recently studied by several
authors, including [4, 6, 8, 10, 14, 19] among others. A complete description of their
properties and further applications to evolution equations can be found in the monographs
[20] and [21] by G. M. N’Guérékata. Observe that equation (1.1) can be viewed as the
limiting equation for the Volterra equation

(1.2) u(t) = /0 a(t — s)[Au(s) + s"g(s,u(s))]lds, t>0,n¢e€Zy,
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see [23, Chapter III, Section 11.5] to obtain details on this assertion.

Sufficient conditions for the existence of almost automorphic solutions of linear and
nonlinear evolution equations have been studied in several papers in recent years (see
[19, 10, 9, 14, 1, 4] and [6] ).

Equation (1.1) arises in the study of heat flow in materials of fading memory type (see
[7] and [22]). While the study of the almost automorphic solutions of (1.1) in the particular
case a(t) = t*~1/T(a) with 1 < o < 2 was studied in [1], to the knowledge of the authors
no results yet exist for the general class of integral equations considered in this paper.

Our plan is as follows: In Section 2, we introduce some preliminaries on integral resolvent
families. In section 3, we treat the linear case

t
(1.3) u(t) = / a(t — $)[Au(s) + s"f(s)|ds, tER, neZs
and prove our first main result. Section 4 is devoted to the semilinear equation
t
(1.4) u(t) = / a(t — $)[Au(s) + f(s,u(s)lds, t€R.

We prove existence of a unique almost automorphic mild solution to (1.4) under the
assumption f is almost automorphic and that some Lipchitz condition on f is satisfied.

2. PRELIMINARIES

Recall that the Laplace transform of a function f € L} (R,, X) is defined by

loc
LU = FO) = /Ooo e ME()dt, Red> w,

if the integral is absolutely convergent for ReA > w. In order to give an operator theoretical
approach to equation (1.1) we recall the following definition (cf. [18]).

Definition 2.1. Let A be a closed and linear operator with domain D(A) defined on a
Banach space X. We call A the generator of an integral resolvent if there exists w > 0 and
a strongly continuous function S : Ry — B(X) such that {1/a(\) : ReX > w} C p(A)

and
1

(&(/\)

In this case, S(t) is called the integral resolvent family generated by A.

I—A) 'tz = / e MS(t)zdt, Rel>w, z€X.
0

The concept of integral resolvent, as defined above, is closely related with the concept of
resolvent family (see Priiss [23, Chapter I]). A closed but weaker definition was formulated
by Priiss [23, definition 1.6]. For the scalar case, where there is a large bibliography, we
refer to the monograph by Gripenberg, Londen and Staffans [12], and references therein.

Because of the uniqueness of the Laplace transform, an integral resolvent family with
a(t) =1 is the same as a Cy-semigroup whereas an integral resolvent family with a(t) = ¢
corresponds to the concept of sine family, see [2, Section 3.15].

We note that integral resolvent families are a particular case of (a, k)-regularized families
introduced in [15]. These are studied in a series of several papers in recent years (see [16],
[17], [24]). According to [15] an integral resolvent family S(¢) corresponds to a (a,a)-
regularized family.
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Notably, integral resolvent families are also present in [5, p.62] (see formula (4.33)) in
the particular case a(t) = t*! /I'(«) and where some properties are studied in the context
of vector-valued LP(R, X) spaces.

As in the situation of Cly-semigroups we have diverse relations of an integral resolvent
and its generator. The following result is a direct consequence of [15, Proposition 3.1 and
Lemma 2.2].

Proposition 2.2. Let S(t) be an integral resolvent family on X with generator A. Then
the following holds:

(a) S(t)D(A) C D(A) and AS(t)x = S(t)Ax for all x € D(A),t > 0;
(b) Let x € D(A) and t > 0. Then

(2.1) S(t)x = a(t)r + /0 a(t — s)AS(s)xds.

(c) Let x € X and t > 0. Then fg a(t —s)S(s)xds € D(A) and
Stz = alt)z + A /0 ot — $)S(s)zds.

In particular, S(0) = a(0).

If an operator A with domain D(A) is the infinitesimal generator of an integral resolvent
family S(t) and a(t) is a continuous, positive and nondecreasing function which satisfies

— ||S(t
lim IS@Il < 00, then for all z € D(A) we have
t—0t a(t)

see [17, Theorem 2.1]. For example, the case a(t) = 1 corresponds to the generator of a
Co-semigroup and a(t) = t actually corresponds to the generator of a sine family.

A characterization of generators of integral resolvent families, analogous to the Hille-
Yosida Theorem for Cy semigroups, can be directly deduced from [15, Theorem 3.4].
Results on perturbation, approximation, representation as well as ergodic type theorems
can be also deduced from the more general context of (a,k) regularized resolvents (see
[16, 17] and [24]).

3. ALMOST AUTOMORPHIC SOLUTIONS
In this section we consider the existence and uniqueness of almost automorphic solutions
to the evolution equation
t
(3.1) u(t) = / a(t — s)[Au(s) + s"g(s)]ds, teR, ne€Zy
—00

where A is the generator of an integral resolvent family and a € L'(R).
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As a consequence of the definition of an almost automorphic function given in the
introduction, the following properties hold (cf [21]) : let f,g : R — X be almost auto-
morphic functions and let A € R, then f + g, Af and f) are almost automorphic, where
fa(t) := f(t + X). Moreover, the range R(f) of f is relatively compact, therefore it is
bounded. Almost automorphic functions constitute a Banach space AA(X) when it is
endowed with the sup norm:

[ flloo := sup || f(£)]].
teR

The following result on the almost automorphicity of the convolution is the key for the
results of this paper. It can be proved by the simple argument of [5, Proposition 2.3]. See
also [6, Theorem 2.1] or [1, Lemma 3.1] for a detailed proof.

Lemma 3.1. Let {S(t)}+>0 C B(X) be a strongly continuous family of bounded and linear
operators such that
|S(t)|| < é(t) for all t € Ry with ¢ € L*(Ry).

If f:R — X is an almost automorphic function then
t
/ S(t—s)f(s)ds € AA(X).

Proposition 3.2. Let a € L'(R). Assume that A generates an integral resolvent family
{S(t)}+>0 on X, which is in addition integrable. If f is almost automorphic and takes
values on D(A) then the unique bounded solution of the problem

(3.2) u(t) = / a(t — $)[Au(s) + f(s)lds, teER,

—00

1s almost automorphic and is given by
t
u(t) = / S(t—s)f(s)ds, teR.

Proof. Since f(t) € D(A) for all t € R, we obtain u(t) € D(A) for all £ € R (see [23,
Proposition 1.2]). Then by (2.1) and Fubini’s theorem we obtain fioo a(t — s) Au(s)ds =

u(t) — ffoo a(t —s) f(7) dr. The statement follows by Lemma 3.1. O

Remark 3.3. A complete discussion on integrable integral resolvents is given in [23, Chapter
3, section 10].

If wy(t) =1+ t)",n€Zy,t e Rand f: R — X we set
[ f lwn,o0 = I.f /wnlloo-

We consider the following weighted classes (see [4])
AAy, (X) ={w,f: fe AAX)} and Cy, o(R, X) :={w,f: f € Co(R; X)}.

Then one can check that AA,,, (X) and C,, o(R, X) are Banach spaces endowed with the
norm || - ||y,,00.- Moreover, it was proved in [4] that AA,,, (X) + Cy, 0(R, X) is a closed
subspace of BC,,, (R, X) and that the sum is (topologically) direct, see [4, Theorem 1.6]
and the remark before Definition 3.2 in the cited paper.

The following is the main result of this section. Their proof follows the same lines of [4,
Theorem 4.3] (see also [1]), but we give it here for the sake of completeness.
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Theorem 3.4. Letn € Z. Assume that A generates an integral resolvent family {S(t)}+>o0
satisfying

(3.3) IE5S @) < (), t € Ry, with ¢ € L'(Ry)
for all k =0,1,....n. Let f € AA(X) taking values on D(A). Then the equation

u(t) = / a(t — s)[Au(s) + s" f(s)]ds, teR,

—0o0

has a unique solution u € AA,,, (X) ® Cy, o(R, X).

Proof. Let u(t / S(s)(t —s)"f(t —s)ds then

/S Yt —8)"f(t—s)ds = /S f(t—s)ds

. ;(—1)’“ (%) [T s s

= uy(f) + ua(t).

(in case n = 0 we take ug(t) = 0). By Lemma 3.1, u; € AA,, (X). We will show that
uz € Cy, o(R, X). Indeed, by (3.3) we have s*S(-) € LY(Ry,B(X)) for all k =0, 1,...,n.

So
| /0 S50 = ) ds|| < [ 1ES@p = s)ds < 1]l
forall k=0,1,...,n. Since lim —— =0, we have
t|—oo (1 4 [t])"
[e.e]
tr/ s"S(s)f(t —s)ds € Cu, o(R,X), 0<r<n
0
and this shows ug € Cy,, o(R, X). O

Taking n = 0 and X = R we obtain the following result for the scalar case.

Corollary 3.5. Let f : R — R be an almost automorphic function, a € L'(R) and let
p >0 be a real number. Then the equation

(3.4) u(t) = / a(t — $)[—pu(s) + f(s)|ds, t€R,

—0o0

has an almost automorphic solution given by

u(t) = /t S,(t—s)f(s)ds, teR,
whenever S,(t), being the solution of the one dimensional equation
35 S0 = alt) —p [ ali = )5,(5)ds,

satisfy |S,(t)| < ¢,(t), with ¢, € LY(R,).
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tozfl

F(a)e*ﬁt where 8> 0 and 1 < a < 2. Then we can check

Example 3.6. Consider a(t) =
that

Sp(t) = 127 B a(— pl)e "
where E, o denotes the generalized Mittag-Leffler function (see e.g. [11]) which is defined
by

[e.o] Zn
Ea7ﬁ(2) = ngo m Oé,ﬁ > 0, z e C.

Using the explicit description of Sp(t)eﬁt given in [1, Corollary 3.7] we can show that
1S,(t)] < ¢,(t), with ¢, € L'(R4). We conclude that the equation

t —s a—1
(3.6) u(t) = /_ “F(a))e—%—s)[—pu(s) + f(s)ds, teR,

has an almost automorphic solution whenever f is almost automorphic.

Notably, the following result provide a wide class of kernels a(t) such that the condition
1S,(t)| < ¢,(t), with ¢, € L*(Ry) of Corollary (3.5) holds.

Corollary 3.7. Let f: R — R be an almost automorphic function and let p > 0 be a real
number. Suppose a € L'(R) is positive, nonincreasing and log-convez, then

a) There is S, € L'(R1) N C(R4) such that equation (3.5) is satisfied;

b) The equation

(3.7) u(t) = / a(t — s)[—pu(s) + f(s))ds, t€R,

— 00

has a mild almost automorphic solution given by

u(t):/_ S)(t—s)f(s)ds, teR.

Proof. Part a) follows by [23, Lemma 4.1, p.98] and then part b) is a consequence of the

previous corollary.
g

4. SEMILINEAR INTEGRAL EQUATIONS ON THE LINE

In this section we study the semilinear equation

(4.1) u(t) = / a(t — $)[Au(s) + f(s,u(s))lds, tcR.

—00

Definition 4.1. Let A be the generator of an integral resolvent family {S(¢)}i>0. A
continuous function u : R — X satisfying the integral equation

(4.2) u(t) = /t S(t—s)f(s,u(s))ds, for all t € R,

is called a mild solution on R to the equation (4.1).



ALMOST AUTOMORPHIC SOLUTIONS 7

Theorem 4.2. Assume that A generates an integral resolvent family {S(t)}+>o0 such that
1S(2)|| < p(t), for allt >0, with ¢ € L*(Ry).

Let f : Rx X — X be almost automorphic in t uniformly in x € X and satisfy a Lipschitz
condition in x uniformly in t, that is,

£t 2) = [t 9l < Lllz —yll, forallz,y € X.
Then

t
(4.3) u(t) = / a(t — s)[Au(s) + f(s,u(s))]ds, teR,

—0o0
has a unique almost automorphic mild solution whenever L < ||¢||7".

Proof. We define the operator F': AA(X) — AA(X) by

(4.4) (Fo)(t) = / S(t—s)f(s,p(s))ds, teR.

In view of [13, Lemma 2.2] (see also [21]) and Lemma 3.1, F is well defined. Then for
o1, p2 € AA(X) we have:

[For = Foalloo = sup
teR

< pr/ 1S ller(t —7) — ot — 7)dr
teR JO

/S@—Mﬂ&m@ﬁ—ﬂ&mwm%

o0
S-Ww¢ﬂmA o(7)dr.

This proves that F' is a contraction, so by the Banach fixed point theorem there exists a

t
unique v € AA(X), such that Fu = u, that is u(t) = / S(t—s)f(s,u(s))ds. O

An immediate consequence of Theorem 4.2 and Corollary 3.7 is the following remarkable
result.

Corollary 4.3. Let p > 0 be a real number. Suppose a € L'(R) is positive, nonincreasing
and log-convex and let f : R x R — R be almost automorphic in the first variable uni-
formly with respect to the second variable, and satisfies a Lipschitz condition in the second
variable, that is,

Then there is S, € LY(Ry) N C(Ry) satisfying the linear equation (3.5). Moreover, the
semilinear equation

u(t) = /_ a(t — s)[—pu(s) + f(s,u(s))lds, teR,

has a unique almost automorphic mild solution whenever L < ||S,||;*.

A different Lipschitz condition is provided in the following result.
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Theorem 4.4. Assume that A generates an integral resolvent family {S(t)}+>o0 such that
1S(t)|| < é(t), for allt >0, with ¢ € L'(R,).

Let f : R x X — X be almost automorphic in t uniformly in x € X and satisfy the
Lipschitz condition

(4.5) £t z) = f(Ey)l < L)z —yll, for allz,y € X, t €R,

where L € L*(R). Then equation (4.1) has a unique almost automorphic mild solution.
Proof. We define the operator F as in (4.4). Let 1,92 be in AA(X) and denote C' :=
supser ||S(t)]]. We have:

[(Fe)(t) = (Fe2) (1)

H/oo S(t = 5)[f(5,01(5)) = f(s,02(s))]ds

IN

/_ L()IS( — )|l ea(s) — als)llds

Cller = pallool L1

IN

In general we get

n t s n—1
I e)(t) — (Fre) )] < (nc_l),</ ([ mar) ds>r|@1—@2||oo
< S ([ pmar) o - el
< G 0~ o)

Hence, since M < 1 for n sufficiently large, by the contraction principle F' has a

unique fixed point u € AA(X). O

We notice that in (4.5) different type of conditions can be considered for L(t). This fact
is studied in the following results.

Theorem 4.5. Assume that A generates an integral resolvent family {S(t)}i>o0 such that
1S(t)|| < é(t), for allt >0, with ¢ € L'(R,).

Let f : R x X — X be almost automorphic in t uniformly in x € X and satisfy the
Lipschitz condition

Hf(t73?) - f(ta y)” < L(t)H‘T - y||7 fOT all T,y € X7 te Ra

t
where the mtegml/ L(s)ds ezists for allt € R. Then equation (4.1) has a unique almost
—00
automorphic mild solution.
P = =k [t _L(s)ds
roof. Define a new norm |||p|| := sup,cr{v(?t)||¢(t)||}, where v(t) := e oo and
k is a fixed positive constant greater than C' := sup,cp ||S(%)||. Let @1, @2 be in AA(X),
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then we have

v(@I(Fe1)(t) = (Fe2) ()]l = S(t —s)[f(s,01(5)) = f(s,02(5))]ds

< ¢ / 9)llg1(s) — wa(s)ds

< c / o(tyo(s) " Lis)o(s)llp1(s) — oa(s) ds
t

< Clllpr - gall / o(t)u(s) L(s)ds
t

= Zller—eall / ke I O L ()

= Zlier - wm/ (447 20 s

= Tt H gy g

< C

> E|H901—902H|-

Hence, since C/k < 1, F has a unique fixed point v € AA(X).
O

Theorem 4.6. Assume that A generates an integral resolvent family {S(t)}+>0 such that
1S < ¢(t), for allt =0,

where ¢ : Ry — Ry is a decreasing function such that ¢o = Y oo _qd(m) < oo. Let
f:Rx X — X almost automorphic in t uniformly in x € X satisfying the Lipschitz
condition

Hf(t7$) - f(ta y)” < L<t)”m - va fOT’ all T,y € X7 te Rv

t4+1

where L := Sup/ L(s)ds < oo Then equation (4.1) has a unique almost automorphic
teR Jt

mild solution whenever L¢g < 1.

Proof. Since ¢ is a decreasing function such that ) > $(m) < oo we have that ¢ €
L'(R;) and hence S(t) is integrable. Let 1, @2 be in AA(X), then for the same operator
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F defined in (4.4), we have

t
IFon)(t) - (Fea)®)l] = H [ s 9ists. 0100 - 565, ea(s)las
t o0
< / L()[IS(t — 9)[llr(s) — @a(s) ds
< / o HONSE = 91 = gl
< z / oy HOOUE= 1)1 = el
o0 t—m
O / oy N1~ o
< Z(b Dller = @2lloe = Loller — w2lloo,
=0
which finish the proof.
]
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