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Abstract. We study S-asymptotically ω-periodic mild solutions of the semilinear Volterra
equation u′(t) = (a ∗ Au)(t) + f(t, u(t)), considered in a Banach space X, where A is
the generator of an (exponentially) stable resolvent family. In particular, we extend re-
cent results for semilinear fractional integro-differential equations considered in [4] and
for semilinear Cauchy problems of first order given in [20]. Applications to integral
equations arising in vicoelasticity theory are shown.

1. Introduction

The study of existence of almost periodic, asymptotically almost periodic, almost auto-
morphic, asymptotically almost automorphic, compact almost automorphic and pseudo
almost periodic solutions is one of the most attracting topics in the qualitative the-
ory of differential equations due both to its mathematical interest as to their applica-
tions in physics and mathematical biology, among other areas. Some recent contribu-
tions on existence of these type of solutions for abstract differential equations have been
made. Related with this subject, we refer the reader to the extensive bibliography in
[2, 5, 6, 7, 9, 10, 13, 18, 22, 23, 29, 30].

A vector-valued function f ∈ Cb([0,∞), X) is called S-asymptotically ω-periodic (see
Henŕıquez, et.al. [20]) if there exists ω > 0 such that

(1.1) lim
t→∞(f(t + ω)− f(t)) = 0.

In [20] it was shown the surprising fact the property (1.1) does not characterize asymptot-
ically ω-periodic functions, that is, bounded and continuous functions which admits the
decomposition f = g + ϕ, where g is ω-periodic and limt→∞ ϕ(t) = 0.

On the other hand, the literature concerning the qualitative behavior (1.1) for evolution
equations is incipient and limited essentially to the study of the existence of solutions of
ordinary differential equations described on finite dimensional spaces (see [16, 19, 24, 28,
31]). Only recently, has been developed a theory of S-asymptotically ω-periodic functions
with values in Banach spaces, and stated the existence of S-asymptotically ω-periodic
functions for the first order semilinear Cauchy problem [20]. These results were now used
in [4] to establish S-asymptotically ω-solutions of semilinear fractional integro-differential
equations.
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We study in this work the existence and uniqueness of S-asymptotically ω-periodic
solutions of the semilinear Volterra equation

(1.2) v′(t) =
∫ t

0
a(t− s)Av(s)ds + f(t, v(t)), t ≥ 0,

(1.3) v(0) = u0 ∈ X,

where A : D(A) ⊂ X → X is the generator of a bounded analytic semigroup or, more
generally, the generator of a resolvent family on a complex Banach space X, a ∈ L1

loc(R+)
and f : [0,∞)×X → X is a continuous function satisfying suitable conditions.

Due to their applications in several fields of science (see [1, 11, 14]), type (1.2) equations
are attracting increasing interest as well as their numerical treatment. Properties of the
solutions of (1.2) have been extensively studied in the last years. In the infinite-dimensional
setting, we refer to the classical monograph [27] and references therein.

The results in the present paper are, on one side, an extension of the results in [20]
and [4] and, on the other side, a contribution to the study of qualitative properties for the
Volterra equation (1.2), which are new even in the scalar case.

This work is organized as follows: In Section 2, we state and review the main definitions
and results of other sources to be used in the article. In Section 3 we study the linear
case by means of an integrated version of (1.2). As a consequence of the theory of linear
evolution equations for Volterra equations [27] we derive our main result (Theorem 3.4)
which states maximal regularity under the conditions that a(t) is 1-regular, A is the
generator of an strongly integrable resolvent, and the initial condition belongs to the
domain of the operator A (generally unbounded). In Section 4, we study the existence and
uniqueness of S-asymptotically ω-periodic mild solutions of the semilinear problem (1.2)-
(1.3). To achieve our results, we require on f(t, x) Lipschitz type conditions (Theorems 4.2,
4.6 and 4.7) or compactness (Theorem 4.9). In passing, we give easy to check conditions
solely in terms of a(t), f and A (being now the generator of a bounded analytic C0-
semigroup) to guarantee that problem (1.2)-(1.3) has a unique S-asymptotically ω-periodic
mild solution (Corollary 4.4). To illustrate our main results, at the end of this paper
we examine sufficient conditions for the existence and uniqueness of S-asymptotically ω-
periodic mild solution to a specific integral equation arising in viscoelasticity theory.

2. Preliminaries

We recall that the Laplace transform of a function f ∈ L1
loc(R+, X) is given by

L(f)(λ) := f̂(λ) :=
∫ ∞

0
e−λtf(t)dt, Reλ > ω,

where the integral is absolutely convergent for Reλ > ω. Furthermore, we denote by B(X)
the space of bounded linear operators from X into X endowed with the norm of operators,
and the notation ρ(A) stands for the resolvent set of A.

In order to give an operator theoretical approach to equation (1.2) we recall the following
definition (cf. [27] and [25]).

Definition 2.1. Let A be a closed and linear operator with domain D(A) defined on a
Banach space X. We call A the generator of a solution operator (or resolvent family)
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if there exists µ ∈ R and a strongly continuous function S : R+ → B(X) such that
{ 1

â(λ) : Reλ > µ} ⊂ ρ(A) and

1
λâ(λ)

(
1

â(λ)
−A)−1x =

∫ ∞

0
e−λtS(t)xdt, Reλ > µ, x ∈ X.

In this case, S(t) is called the solution operator generated by A.

In the scalar case there is a large bibliography which studies the concept of resolvent, we
refer to the monograph by Gripenberg et al. [17], and references therein. We emphasize
the fact that because of the uniqueness of the Laplace transform, in the case a(t) ≡ 1
the family S(t) corresponds to a C0-semigroup whereas that in case a(t) = t a solution
operator corresponds to the concept of cosine family, see e.g. [3] or [12]. We note that
solution operators, as well as resolvent families, are a particular case of (a, k)-regularized
families introduced in [25]. According to [25] a solution operator S(t) corresponds to a
(1, a)-regularized family.

In this work Cb([0,∞), X) denotes the space consisting of the continuous and bounded
functions from [0,∞) into X, endowed with the norm of the uniform convergence, which
is denoted by || • ||∞, and the notation SAPω(X) stands for the subspace of Cb([0,∞), X)
consisting of the S-asymptotically ω-periodic functions. We note that SAPω(X) is a
Banach space (see [20], Proposition 3.5).

Definition 2.2. ([20]) A continuous function f : [0,∞) × X → X is said uniformly S-
asymptotically ω-periodic on bounded sets if for every bounded subset K of X, the set
{f(t, x) : t ≥ 0, x ∈ K} is bounded and limt→∞(f(t, x) − f(t + ω, x)) = 0 uniformly in
x ∈ K.

Definition 2.3. ([20]) A continuous function f : [0,∞)×X → X is said asymptotically
uniformly continuous on bounded sets if for every ε > 0 and every bounded subset K of
X, there exist Lε,K ≥ 0 and δε,K > 0 such that ||f(t, x)− f(t, y)|| ≤ ε, for all t ≥ Lε,K and
all x, y ∈ K with ||x− y|| ≤ δε,K .

Lemma 2.4. ([20]) Let f : [0,∞) ×X → X be a uniformly S-asymptotically ω-periodic
on bounded sets and asymptotically uniformly continuous on bounded sets function and,
let u : [0,∞) → X be a S-asymptotically ω-periodic function. Then the function v(t) =
f(t, u(t)) is S-asymptotically ω-periodic.

Definition 2.5. ([27]) A strongly measurable family of operators {T (t)}t≥0 ⊂ B(X) is
called uniformly integrable (or strongly integrable) if

∫∞
0 ||T (t)||dt < ∞.

We also recall the following concept, studied for resolvent families in [26]:

Definition 2.6. A strongly continuous family of operators {T (t)}t≥0 ⊂ B(X) is called
uniformly stable if ||T (t)|| → 0 as t →∞.

Definition 2.7. ([20]) A strongly continuous family of operators {T (t)}t≥0 ⊂ B(X) is
said to be strongly S-asymptotically ω-periodic if there is ω > 0 such that T (·)x is S-
asymptotically ω-periodic for all x ∈ X.

Definition 2.8. ([27]) Let a ∈ L1
loc(R+) be of subexponential growth and k ∈ N. The

function a(t) is called k−regular if there is a constant C > 0 such that

|λnân(λ)| ≤ C|â(λ)|, for all Re(λ) > 0, 0 ≤ n ≤ k.
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3. The linear case

In this section we consider the linear version for equation (1.2), that is

(3.1) v′(t) =
∫ t

0
b(t− s)Av(s)ds + f(t), t ≥ 0,

(3.2) v(0) = u0 ∈ X.

or, equivalently, the integrated form

(3.3) v(t) =
∫ t

0
a(t− s)Av(s)ds +

∫ t

0
f(s)ds + u0, t ≥ 0,

where u0 ∈ X and a(t) =
∫ t
0 b(s)ds. Recall that a function v ∈ C(R+; X) is called a

strong solution of (3.3) on R+ if v ∈ C(R+; D(A)) and (3.3) holds on R+. If A generates a
resolvent family S(t), the variation of parameters formula allows us to write the solution
of problem (3.3) as (cf. [27, Proposition 1.2])

v(t) = S(t)u0 +
∫ t

0
S(t− s)f(s)ds, t ≥ 0.

Moreover, v(t) is a strong solution of (3.3) if u0 ∈ D(A), see [27, Proposition 1.2].

Lemma 3.1. Suppose that A generates an uniformly integrable resolvent family S(t) and
let f ∈ SAPω(X). Then ∫ t

0
S(t− s)f(s)ds ∈ SAPω(X).

Proof. Let v(t) :=
∫ t
0 S(t− s)f(s)ds. We have

v(t + ω)− v(t) =
∫ t+ω

0
S(t + ω − s)f(s)ds−

∫ t

0
S(t− s)f(s)ds

=
∫ ω

0
S(t + ω − s)f(s)ds +

∫ t+ω

ω
S(t + ω − s)f(s)ds−

∫ t

0
S(t− s)f(s)ds

=
∫ ω

0
S(t + ω − s)f(s)ds +

∫ t

0
S(t− s)f(s + ω)ds−

∫ t

0
S(t− s)f(s)ds

For each ε > 0, there is a positive constant Lε such that ||f(t + ω)− f(t)|| ≤ ε, for every
t ≥ Lε. Under these conditions, for t ≥ Lε, we can estimate

||v(t + ω)− v(t)|| ≤
∫ ω

0
||S(t + ω − s)f(s)||ds

+
∫ Lε

0
||S(t− s)[f(s + ω)− f(s)]||ds

+
∫ t

Lε

||S(t− s)[f(s + ω)− f(s)]||ds

≤ ||f ||∞
∫ ω

0
||S(t + ω − s)||ds + 2||f ||∞

∫ Lε

0
||S(t− s)||ds

+ ε

∫ t

Lε

||S(t− s)||ds
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= ||f ||∞
∫ t+ω

t
||S(s)||ds + 2||f ||∞

∫ t

t−Lε

||S(s)||ds

+ ε

∫ t−Lε

0
||S(s)||ds

≤ ||f ||∞
∫ ∞

t
||S(s)||ds + 2||f ||∞

∫ ∞

t−Lε

||S(s)||ds

+ ε

∫ ∞

0
||S(s)||ds

which permit to infer that v(t + ω)− v(t) → 0 as t →∞.
¤

Direct consequence of the previous lemma is the following theorem.

Theorem 3.2. Suppose that A generates an uniformly integrable resolvent S(t) which is
S-asymptotically ω-periodic, and let f ∈ SAPω(X). Then for each u0 ∈ D(A) the equation
(3.3) admits a unique S- asymptotically ω-periodic strong solution.

We recall the following definition:

Definition 3.3. We say that A generates a parabolic resolvent family if the following
conditions are satisfied.

(P1) â(λ) 6= 0, 1/â(λ) ∈ ρ(A) for all Reλ > 0.
(P2) There exists a constant M ≥ 1 such that

(3.4) ‖(λ− λâ(λ)A)−1‖ ≤ M

| λ | for all Reλ > 0.

If A generate an analytic resolvent which is bounded on some sector Σ(0, θ) then A
generates a parabolic resolvent family. The converse is not true. A standard situation
leading with generators of parabolic resolvents is the following: Let a(t) of subexponential
growth of positive type, and let A generate a bounded analytic C0-semigroup in X, then
A generate a parabolic resolvent (cf. [27, Proposition 3.1]). With the above definitions,
we are ready to state the following result.

Theorem 3.4. Suppose that a(t) is 1-regular and A generates a parabolic and uniformly
integrable resolvent family {S(t)}t≥0, and let f ∈ SAPω(X). Then for each u0 ∈ D(A) the
equation (3.3) admits a unique S- asymptotically ω-periodic strong solution.

Proof. Since a(t) is 1-regular and A generates a parabolic and uniformly integrable resol-
vent family, we obtain by the main result in [26] that {S(t)}t≥0 is uniformly stable. In
particular, {S(t)}t≥0 is S-asymptotically ω-periodic for any ω > 0. The result is now a
consequence of Theorem 3.2. ¤

4. The semilinear case

In this section we consider the existence and uniqueness of S-asymptotically ω-periodic
mild solutions of the problem (1.2)-(1.3). The considerations in the linear case motivates
the following definition.
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Definition 4.1. A function u ∈ Cb([0,∞), X) is said S-asymptotically ω-periodic mild
solution of problem (1.2)-(1.3) if u(·) is S-asymptotically ω-periodic and

(4.1) u(t) = S(t)u0 +
∫ t

0
S(t− s)f(s, u(s))ds, for all t ≥ 0.

In the case that the resolvent family is differentiable, we can give an alternative definition
of mild solution of problem (1.2) (without initial condition) as follows:

(4.2) u(t) = f(t, u(t)) +
∫ t

0
Ṡ(t− s)f(s, u(s))ds, for all t ≥ 0.

Note that in case of a C0-semigroup T (t), the last definition is the usually used when
the semigroup is, in addition, analytic where Ṫ (t) = AT (t). Moreover, we observe that if
A generates a parabolic resolvent family S(t) (see Definition 3.3) and the kernel a(t) is
2-regular (see Definition 2.8), then S(t) is differentiable (cf. [27, Theorem 3.1]).

Theorem 4.2. Suppose A generates an uniformly integrable solution operator S(t), which
is in addition strongly S-asymptotically ω-periodic. Let f : [0,∞)×X → X be a continuous
function such that f(·, 0) is integrable in [0,∞) and there exists a continuous integrable
function L : [0,∞) → R such that

(4.3) ‖f(t, x)− f(t, y)‖ ≤ L(t)‖x− y‖, for all x, y ∈ X, t ≥ 0.

Then the problem (1.2)-(1.3) has a unique S-asymptotically ω-periodic mild solution.

Proof. We define the operator Γ on the space SAPω(X) by

(4.4) (Γu)(t) := S(t)u0 +
∫ t

0
S(t− s)f(s, u(s))ds = S(t)u0 + v(t).

We show initially that Γu ∈ SAPω(X). In fact, we observe that by hypothesis S(·)u0 ∈
SAPω(X). It follows from the inequality ||f(s, u(s))|| ≤ L(s)||u(s)|| + ||f(s, 0)||, that the
function s → f(s, u(s)) is integrable in [0,∞). Hence, we obtain that v(t) ∈ Cb([0,∞), X)
and

∫ t
a S(t − s)f(s, u(s))ds → 0, as a → ∞, uniformly for t ≥ a. In addition, for fixed

a, the set {f(s, u(s)) : 0 ≤ s ≤ a} is compact, which implies that S(t + ω)f(s, u(s)) −
S(t)f(s, u(s)) → 0, as t → ∞, uniformly in s ∈ [0, a]. Combining these properties with
the decomposition

v(t + ω)− v(t) =
∫ a

0
[S(t + ω − s)− S(t− s)]f(s, u(s))ds

+
∫ t+ω

a
S(t + ω − s)f(s, u(s))ds−

∫ t

a
S(t− s)f(s, u(s))ds.

Hence v(t + ω) − v(t) → 0 as t → ∞. Furthermore, for u1, u2 ∈ SAPω(X) the inequality
||(Γu1)(t)−(Γu2)(t)|| ≤ C

∫ t
0 L(s)||u1(s)−u2(s)||ds shows that Γ : SAPω(X) → SAPω(X)

is a continuous map. On the other hand, we define the linear map B : Cb([0,∞)) →
Cb([0,∞)) by (Bg)(t) = C

∫ t
0 L(s)g(s)ds, for t ≥ 0. It is clear that B is continuous.

Moreover, B is completely continuous. To establish this assertion, for each ε > 0, we take



S-ASYMPTOTICALLY ω-PERIODIC SOLUTIONS 7

a ≥ 0 such that C
∫∞
a L(s)ds ≤ ε and, for each g ∈ Cb([0,∞)) with ||g||∞ ≤ 1, we define

the functions

Γ1(g)(t) :=





C
∫ t
0 L(s)g(s)ds, 0 ≤ t ≤ a,

C
∫ a
0 L(s)g(s)ds, t ≥ a,

Γ2(g)(t) :=





0, 0 ≤ t ≤ a,

C
∫ t
0 L(s)g(s)ds, t ≥ a.

It follows from the Ascoli-Arzela Theorem that the set R0 := {Γ1(g) : ||g||∞ ≤ 1} is
relatively compact. Since Bg(t) = Γ1(g)(t) + Γ2(g)(t) for all t ≥ 0, we can infer that
{Bg : ||g||∞ ≤ 1} ⊂ R0 + {β : β ∈ Cb([0,∞)), ||β||∞ ≤ ε}, which shows that the set
{Bg : ||g||∞ ≤ 1} is relatively compact and, in turn, that B is completely continuous.
Moreover, since the point spectrum σp(B) = {0}, the spectral radius of B is equal to zero.
Let m : Cb([0,∞), X) → Cb([0,∞)) be the map defined by m(u)(t) = sup0≤s≤t ||u(s)||. It
is not difficult to verify that the maps Γ, B and m satisfy all the conditions of Theorem 1
in [21] which implies that Γ has a unique fixed point u. ¤

Theorem 4.2 together with the argument used in the proof of Theorem 3.4 permits to
infer the following consequence.

Corollary 4.3. Suppose a(t) is 1-regular and A generates a parabolic and uniformly
integrable resolvent family S(t). Let f : [0,∞) × X → X be a continuous function
such that f(·, 0) is integrable in [0,∞) and there exists a continuous integrable function
L : [0,∞) → R such that

(4.5) ‖f(t, x)− f(t, y)‖ ≤ L(t)‖x− y‖, for all x, y ∈ X, t ≥ 0.

Then the problem (1.2)-(1.3) has a unique S-asymptotically ω-periodic mild solution.

The following result will be of more practical use.

Corollary 4.4. Suppose a(t) is 1-regular, of subexponential growth, of positive type, com-
pletely monotonic and satisfies a(∞) = limt→∞ a(t) > 0. Assume that A generates a
bounded analytic C0-semigroup and 0 ∈ ρ(A). Let f : [0,∞) × X → X be a continuous
function such that f(·, 0) is integrable in [0,∞) and there exists a continuous integrable
function L : [0,∞) → R such that

(4.6) ‖f(t, x)− f(t, y)‖ ≤ L(t)‖x− y‖, for all x, y ∈ X, t ≥ 0.

Then the problem (1.2)-(1.3) has a unique S-asymptotically ω-periodic mild solution.

Proof. Under the stated hypothesis, it follows from [27, Corollary 10.1] that A generates
an uniformly integrable analytic resolvent. Hence A generates a uniformly integrable
parabolic resolvent, which is then also uniformly stable. The result follows. ¤

Example 4.5. Let a(t) = tβ−1

Γ(β) , t > 0. Then a(t) satisfies the hypotheses in the previous
corollary if and only if β ≥ 1. Note that we esssentially recover [4, Theorem 3.2], and [20,
Theorem 4.3] in case β = 1. Also observe that in the above cited works, the examples given
are always corresponding to generators of analytic semigroups with 0 ∈ ρ(A).

The case where L in (4.3) is a constant, is analyzed in the following two results.
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Theorem 4.6. Suppose A generates an uniformly integrable resolvent family S(t) which
is stronlgy S-asymptotically ω-periodic. Let f : [0,∞) ×X → X be a function uniformly
S-asymptotically ω-periodic on bounded sets and satisfies the Lipschitz condition

(4.7) ‖f(t, x)− f(t, y)‖ ≤ L‖x− y‖, for all x, y ∈ X, t ≥ 0.

If L < ||S||−1
1 , then the problem (1.2)-(1.3) has a unique S-asymptotically ω-periodic mild

solution.

Proof. Proceeding as in the proof of Theorem 4.2, we define the map Γ on the space
SAPω(X) by the expression (4.4). We next prove that Γ is a contraction from SAPω(X)
into SAPω(X). We show initially that Γ is SAPω(X)−valued. Let u be in SAPω(X).
By hypothesis the function S(·)u0 ∈ SAPω(X) and the problem is reduced to show that
the function v given by (4.4) belongs to SAPω(X). In view of that f is asymptotically
uniformly continuous on bounded sets and applying Lemma 2.4 and Lemma 3.1 we get
that Γu ∈ SAPω(X). On the other hand, for u1, u2 ∈ SAPω(X), we have the inequality

||(Γu1)(t)− (Γu2)(t)|| ≤ L||S||1||u1 − u2||∞,

which proves that Γ is a contraction. Now, the assertion is consequence of the contraction
mapping principle. The proof is complete. ¤
Theorem 4.7. Suppose A generates an uniformly bounded and integrable resolvent family
S(t) such that limt→∞(S(t)x − S(t + nω)x) = 0 uniformly in n ∈ N, for all x ∈ X. Let
Condition (4.7) be holds and assume that f(·, 0) is a bounded function and limt→∞(f(t, x)−
f(t + nω, x)) = 0 uniformly in x ∈ K and n ∈ N, for every bounded subset K of X. If
L < ||S||−1

1 , then the problem (1.2)-(1.3) has a unique asymptotically ω-periodic mild
solution.

Proof. Let S(X) be the space consisting of functions u ∈ Cb([0,∞), X) such that limt→∞
(u(t)−u(t+nω)) = 0 uniformly in n ∈ N. It is easy to see that S(X) is a closed subspace
of Cb([0,∞), X) (see [20]). Let u be in S(X). It follows from our assumptions that for
each ε > 0, there is a positive constant Lε such that ||f(t+nω, u(t+nω))−f(t, u(t))|| ≤ ε
for every t ≥ Lε and every n ∈ N. We consider the map Γ on S(X) by the expression
(4.4). We have the following estimate: ||Γu||∞ ≤ ||S||∞||u0||+[L||u||∞+ ||f(·, 0)||∞]||S||1.
Let v(t) :=

∫ t
0 S(t− s)f(s)ds, proceeding as the proof of Lemma 3.1, we have for t ≥ Lε

||v(t + nω)− v(t)|| ≤ [L||u||∞ + ||f(·, 0)||∞]
( ∫ ∞

t
||S(s)||ds

+ 2
∫ ∞

t−Lε

||S(s)||ds
)

+ ε||S||1.

We get that Γ is S(X)−valued. Therefore the fixed point of Γ belongs to S(X) and the
assertion is consequence of Corollary 3.1 in [20]. The proof is complete. ¤

We next study the existence of S-asymptotically ω-periodic mild solutions of the equa-
tion (1.2) when the function f is not Lipschitz continuous. We will consider functions f
that satisfies the following boundedness condition.

(B) There exist a continuous nondecreasing function W : R+ := [0,∞) → R+ such that
‖f(t, x)‖ ≤ W (‖x‖) for all t ∈ R+ and x ∈ X.
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Let h : R+ → R be a continuous function such that h(t) ≥ 1 for all t ∈ R+, and
h(t) →∞ as t →∞. We consider the space

Ch(X) = {u ∈ C(R+, X) : lim
t→∞

u(t)
h(t)

= 0}

endowed with the norm

‖u‖h = sup
t≥0

‖u(t)‖
h(t)

.

We will use the following result (cf. [8, Lemma 2.2]).

Lemma 4.8. A subset K ⊆ Ch(X) is a relatively compact set if verifies the following
conditions:

(c-1) The set Kb = {u|[0,b] : u ∈ K} is relatively compact in C([0, b], X) for all b ≥ 0.
(c-2) limt→∞

||u(t)||
h(t) = 0 uniformly for all u ∈ K.

Theorem 4.9. Assume that A generates an uniformly bounded and integrable resolvent
family {S(t)}t≥0 which is in addition strongly S-asymptotically ω-periodic. Let f : R+ ×
X → X be an uniformly S-asymptotically ω-periodic on bounded sets and asymptotically
uniformly continuous on bounded sets function and that satisfies assumption (B), and the
following conditions:

(a) For each C ≥ 0, the function t 7→ ∫ t
0 ||S(t−s)||W (Ch(s))ds is included in BC(R+).

We set

β(C) =
∥∥∥||S(·)||||u0||+

∫ ·

0
||S(· − s)||W (Ch(s))ds

∥∥∥
h
.

(b) For each ε > 0 there is δ > 0 such that for every u, v ∈ Ch(X), ‖v−u‖h ≤ δ implies
that

∫ t
0 ||S(t− s)||‖f(s, v(s))− f(s, u(s))‖ds ≤ ε for all t ≥ 0.

(c) lim infξ→∞ ξ
β(ξ) > 1.

(d) For all a, b ∈ R, a < b, and r > 0, the set {f(s, h(s)x) : a ≤ s ≤ b, x ∈ X, ‖x‖ ≤ r}
is relatively compact in X.
Then the problem (1.2)-(1.3) has an S-asymptotically ω-periodic mild solution.

Proof. We define the operator Γ on Ch(X) as in (4.4). We show that Γ has a fixed point
in SAPω(X). We divide the proof in several steps.
(i) For u ∈ Ch(X), we have that

∥∥∥Γu(t)
∥∥∥ ≤ ||S(t)||||u0||+

∫ t

0
||S(t− s)||W (‖u(s)‖)ds

≤ ||S||∞||u0||+
∫ t

0
||S(t− s)||W (‖u‖hh(s))ds.(4.8)

It follows from condition (a) that Γ : Ch(X) → Ch(X).
(ii) The map Γ is continuous. In fact, for ε > 0, we take δ involved in condition (b). If
u, v ∈ Ch(X) and ‖u− v‖h ≤ δ, then

‖Γu(t)− Γv(t)‖ ≤
∫ t

0
||S(t− s)||‖f(s, u(s))− f(s, v(s))‖ds ≤ ε,

which shows the assertion.
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(iii) We show that Γ is completely continuous. To abbreviate the text, we set Br(Z) for
the closed ball with center at 0 and radius r in a space Z. Let V = Γ(Br(Ch(X))) and
v = Γ(u) for u ∈ Br(Ch(X)).

Initially, we will prove that Vb(t) is a relatively compact subset of X for each t ∈ [0, b].
We get

v(t) = S(t)u0 +
∫ t

0
S(s)f(t− s, u(t− s))ds ∈ S(t)u0 + tc(K),

where c(K) denotes the convex hull of K and K = {S(s)f(ξ, h(ξ)x) : 0 ≤ s ≤ t, 0 ≤ ξ ≤
t, ‖x‖ ≤ r}. Using that S(·) is strongly continuous and the property (d) of f , we infer that
K is a relatively compact set, and V (t) ⊆ S(t)u0 + tc(K), which establishes our assertion.

We next show that the set Vb is equicontinuous. In fact, we can decompose

v(t + s)− v(t) = (S(t + s)− S(t))u0

+
∫ s

0
S(ξ)f(t + s− ξ, u(t + s− ξ))dξ

+
∫ t

0
(S(ξ + s)− S(ξ))f(t− ξ, u(t− ξ))dξ.

For each ε > 0, we can choose δ1 > 0 such that
∥∥∥

∫ s

0
S(ξ)f(t + s− ξ, u(t + s− ξ))dξ

∥∥∥ ≤
∫ s

0
||S(ξ)||W (rh(t + s− ξ))dξ ≤ ε/2,

for s ≤ δ1. Moreover, since {f(t − ξ, u(t − ξ)) : 0 ≤ ξ ≤ t, u ∈ Br(Ch(X))} is a relatively
compact set and S(·) is strongly continuous, we can choose δ2 > 0 and δ3 > 0 such that
||(S(t+s)−S(t))u0|| < ε/4, for s ≤ δ2 and ‖(S(ξ+s)−S(ξ))f(t−ξ, u(t−ξ))‖ ≤ ε/2(t+1)
for s ≤ δ3. Combining these estimates, we get ‖v(t + s) − v(t)‖ ≤ ε for s enough small
and independent of u ∈ Br(Ch(X)).

Finally, applying condition (a), we can show that

v(t)
h(t)

≤ 1
h(t)

[
||S(t)||||u0||+

∫ t

0
||S(t− s)||W (rh(s))ds

]
→ 0, t →∞,

and this convergence is independent of u ∈ Br(Ch(X)).
Hence V satisfies conditions (c-1), (c-2) of Lemma 4.8, which completes the proof that

V is a relatively compact set in Ch(X).
(iv) If uλ(·) is a solution of equation uλ = λΓ(uλ) for some 0 < λ < 1, from the estimate

‖uλ(t)‖ = λ
∥∥∥S(t)u0 +

∫ t

0
S(t− s)f(s, uλ(s))ds

∥∥∥

≤ ||S(t)||||u0||+
∫ t

0
||S(t− s)||W (‖uλ‖hh(s))ds

≤ β(‖uλ‖h)h(t),

we get
‖uλ‖h

β(‖uλ‖h)
≤ 1
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and, combining with condition (c), we conclude that the set {uλ : uλ = λΓ(uλ), λ ∈ (0, 1)}
is bounded.
(v) It follows from Lemma 2.4 and Lemma 3.1 that Γ(SAPω(X)) ⊆ SAPω(X) and, con-
sequently, we can consider Γ : SAPω(X) → SAPω(X). Using properties (i)-(iii) we have
that this map is completely continuous. Applying Leray-Schauder alternative theorem [15,
Theorem 6.5.4], we infer that Γ has a fixed point u ∈ SAPω(X). Let (un)n be a sequence
in SAPω(X) that converges to u. We see that (Γun)n converges to Γu = u uniformly in
[0,∞). This implies that u ∈ SAPω(X), and completes the proof. ¤

Corollary 4.10. Assume that A generates an uniformly bounded and integrable resolvent
family {S(t)}t≥0 which is in addition strongly S-asymptotically ω-periodic. Let f : R+ ×
X → X be an uniformly S-asymptotically ω-periodic on bounded sets that satisfies the
Hölder type condition

(4.9) ‖f(t, y)− f(t, x)‖ ≤ C1‖y − x‖α, 0 < α < 1,

for all x, y ∈ X, t ≥ 0, where C1 > 0 is a constant. Moreover, assume the following
conditions:
(i) f(t, 0) = q.

(ii) supt≥0

∫ t
0 ||S(t− s)||h(s)αds < +∞.

(iii) For all a, b ≥ 0, a < b, and r > 0, the set {f(s, h(s)x) : a ≤ s ≤ b, x ∈ X, ‖x‖ ≤ r}
is relatively compact in X.
Then the problem (1.2)-(1.3) has an S-asymptotically ω-periodic mild solution.

To finish this work, we examine the existence and uniqueness of S-asymptotically ω-
periodic mild solution to the integro differential equation

(4.10)

ut(t, x) =
∫ t

0
da(s)uxx(t− s, x) + f(t, u(t, x)), t ≥ 0, x ∈ [0, 1],

u(t, 0) = u(t, 1) = 0,

u(0, x) = u0(x), x ∈ [0, 1].

Here a : R → R+ is a function of bounded variation on each compact interval J =
[0, T ](T > 0), with a(0) = 0. The above initial-boundary problem is a typical example of
one-dimensional problems in viscoelasticity, like simple shearing motions, simple tension,
torsion of a rod; see [27, Section 5.4].

To obtain a formulation as an abstract evolutionary integral equation like (1.2)-(1.3),
we choose X = L2[0, 1] and define an operator A by means of Au(x) = uxx(x) with
domain D(A) = {u ∈ X : uxx ∈ X, u(0) = u(1) = 0}. It is well known that A generates
an bounded analytic semigroup with 0 ∈ ρ(A). Then Corollary 4.4 implies the following
result.

Corollary 4.11. Suppose a(t) is 1-regular, of subexponential growth, of positive type,
completely monotonic and satisfies a(∞) = limt→∞ a(t) > 0. Let f : [0,∞)×X → X be a
continuous function such that f(·, 0) is integrable in [0,∞) and there exists a continuous
integrable function L : [0,∞) → R such that

(4.11) ‖f(t, x)− f(t, y)‖ ≤ L(t)‖x− y‖, for all x, y ∈ X, t ≥ 0.
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Then the problem (4.10) has a unique S-asymptotically ω-periodic mild solution.
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[13] J.A. Goldstein, G.M.N’Guérékata, Almost automorphic solutions of semilinear evolution equations,
Proc. Amer. Math. Soc. 133(8) (2005), 2401-2408.

[14] R. Gorenflo, F. Mainardi, Fractional Calculus: Integral and Differential Equations of Fractional Order,
A. Carpinteri and F. Mainardi (Editors): Fractals and Fractional Calculus in Continuum Mechanics,
Springer Verlag, Vienna and New York 1997, 223-276.

[15] A. Granas, J. Dugundji, Fixed Point Theory, Springer-Verlag, New York, 2003.
[16] R. C. Grimmer, Asymptotically almost periodic solutions of differential equations, SIAM J. Appl.

Math. 17 (1969), 109-115.
[17] G. Gripenberg, S-O Londen, O. Staffans, Volterra Integral and Functional Equations. Encyclopedia of

Mathematics and Applications, 34, Cambridge University Press, Cambridge-New York, 1990.
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[21] H. Henŕıquez, Approximation of abstract functional differential equations with unbounded delay. Indian

J. Pure Appl. Math. 27 (4) (1996), 357-386.
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