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Abstract. Let X be a complex Banach space. The connection between algebra homomor-
phisms defined on subalgebras of the Banach algebra `1(N0) and fractional versions of Cesàro
sums of a linear operator T ∈ B(X) is established. In particular, we show that every (C, α)-
bounded operator T induces an algebra homomorphism - and it is in fact characterized by
such algebra homomorphism. Our method is based on some sequence kernels, Weyl fractional
difference calculus and convolution Banach algebras that are introduced and deeply examined.
To illustrate our results, improvements to bounds for Abel means, new insights on the (C, α)-
boundedness of the resolvent operator for temperated α-times integrated semigroups, and ex-
amples of bounded homomorphisms are given in the last section.

1. Introduction

Let X be a complex Banach space. Let T be an operator in the Banach algebra B(X) and
denote by T the discrete semigroup given by T (n) := Tn for n ∈ N0. The Cesàro sum of order
α > 0 of T , {∆−αT (n)}n∈N0 ⊂ B(X), is defined by

∆−αT (n)x =
n∑

j=0

kα(n− j)T (j)x, x ∈ X, n ∈ N0,

where

kα(n) =
Γ(α + n)

Γ(α)Γ(n + 1)
, n ∈ N0,

is the Cesàro kernel. It is well-known that Cesàro sums are an important concept that appears
in several contexts and ways in the literature. For instance, in Zygmund’s book, it appeared
in connection with summability of Fourier series [30, Chapter III, Section 3.11] and in [7] in
relation with weighted norm inequalities for Jacobi polynomials and series. See also [20] and
[25]. The starting point for our investigation is this definition of fractional sum of the discrete
semigroup T . Certain fractional sums have been used in recent years to develop a theory of
fractional differences with interesting applications to boundary value problems and concrete
models coming from biological issues, see for example [5] and [19]. Note that this definition
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coincides or is connected with other fractional sums of the discrete semigroup T on the set N0,
see [4, Section 1] or [6, Theorem 2.5].

Consider φ : N0 → R+ a positive weight, that is, φ(n + m) ≤ Cφ(n)φ(m) with C > 0, and
the weighted Banach algebra `1

φ (endowed with their natural convolution product). Suppose
1

φ(·)T ∈ `∞(B(X)). It is well-known and easy to show that the semigroup T induces an algebra
homomorphism θ : `1

φ → B(X) defined by

θ(f)x :=
∞∑

n=0

f(n)T (n)x, f ∈ `1
φ, x ∈ X.

Note that in the case that T is a power bounded operator, i.e., T ∈ `∞(B(X)), then θ : `1 →
B(X). Moreover, this homomorphism is a natural extension of the Z-transform. See Section 4
and [12] for more information on this concept.

In general, algebra homomorphisms are useful tools to treat different interesting aspects of
operator theory: algebraic relations, sharp norm estimations, subordination operators, or ergodic
behaviour (as Katznelson-Tzafriri type theorems, see [23]).

As mentioned before, it is remarkable that Cesàro sums have appeared in the literature some
time ago but until now, their relation with the theory of fractional sums and their algebraic
structure has not been noted. The first main purpose of this paper is to show how this connection
provides new insight on properties and characterizations of Cesàro sums, notably concerning
their interplay with algebra homomorphisms.

Cesàro sums are also a basic tool to define (C, α)-bounded operators, a natural extension of
power-bounded operators. We recall that a bounded operator T ∈ B(X) is called (C, α)-bounded
(α > 0) if

sup
n
‖ 1
kα+1(n)

∆−αT (n)‖ < ∞.

See [10, 27] for examples and properties of (C, α)-bounded operators. Note that if T is power
bounded, then T is a (C, α)-bounded operator for every α > 0. However, there are operators
that do not satisfy the power-boundedness condition, but supn≥1

1
n‖∆−1T (n)‖ < ∞, as the

well-known Assani example shows

T =
( −1 2

0 −1

)
,

see [13, Section 4.7]; recently other examples have appeared in [10, 11, 27, 28, 29].
The following natural question then arises: (Q) Can T induce an algebra homomorphism from

a proper subalgebra A ⊂ `1 to B(X)?
The second purpose of this paper is to show that, surprisingly, the answer to (Q) is positive

for every bounded operator such that their Cesàro sums are properly bounded (which includes
(C, α)-bounded operators). More precisely, we construct appropriate subalgebras τα(kα+1) ⊂ `1

and then we prove that the following assertions are equivalent:
(i) T is (C, α)-bounded operator.
(ii) There exists a bounded algebra homomorphism θ : τα(kα+1) → B(X) such that θ(e1) =

T.

In the limit case α = 0, the following assertions are equivalent:
(a) T is power bounded.
(b) There exists a bounded algebra homomorphism θ : `1 → B(X) such that θ(e1) = T.
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(c) For any 0 < α < 1, there exist a bounded algebra homomorphism θα : τα(kα+1) → B(X)
such that θα(e1) = T and sup

0<α<1
‖θα‖ < ∞.

This paper is organized as follows: In order to construct a suitable Banach algebra and the
corresponding homomorphism, we introduce in Section 2 the notion of α-th fractional Weyl sum
as follows:

W−αf(n) =
∞∑

j=n

kα(j − n)f(j), n ∈ N0.

see Definition 2.2 below. We state their main algebraic properties in Proposition 2.4. Then,
we introduce Banach algebras τα(φ) as the completion of the space of sequences c0,0 under the

norm qφ(f) :=
∞∑

n=0

φ(n)|Wαf(n)| (Theorem 2.11). The weight sequences φ need to verify some

summability conditions (Definition 2.8) to prove that the space τα(φ) is a Banach algebra. It
is remarkable that such Banach algebras extend those defined for α ∈ N0 and φ = kα+1 in [17,
Section 4]. Therefore, they are considered to study subalgebras of analytic functions on the unit
disc contained in the Korenblyum and (analytic) Wiener algebra.

Section 3 contains an interesting characterization for the Cesàro sum of powers of a given
(C, α)-bounded operator T ∈ B(X) solely in terms of a certain functional equation (Theorem
3.3). The obtained characterization corresponds to an extension of the well-known functional
equation for the corresponding discrete semigroup T , namely

TnTm = Tn+m, n, m ∈ N0.

Theorem 3.5 gives a complete answer to question (Q) by defining a bounded algebra homomor-
phism θ : τα(φ) → B(X) given explicitly by

θ(f)x :=
∞∑

n=0

Wαf(n)∆−αT (n)x, f ∈ τα(φ), x ∈ X.

This homomorphism enjoys remarkable properties. The existence of bounded homomorphisms in
these new Banach algebras completely characterizes the growth of Cesàro sums in Corollary 3.6;
in particular bounded homomorphisms from algebras τα(kα+1) characterize (C, α)-boundedness
(Corollary 3.7). Such connection seems to be new as well as the functional equation found in
the beginning of this section.

The Z-transform technique may be traced back to De Moivre around the year 1730. In fact,
De Moivre introduced the more general concept of “generating functions” to probability theory.
It is interesting to compare the Z-transform (discrete case) to the Laplace transform (continuous
case), see for example [12, Section 6.7]. In Section 4, we use the Widder space C∞

W ((ω,∞), X;m)
where m is Borel measure on R+, introduced in [8], to give a new characterization of summable
vector-valued sequences in terms of the Z-transform in Theorem 4.1. We complete the approach
given in Section 3 involving the Z-transform and resolvent operators in Theorem 4.4.

Finally, in Section 5 we suggest several applications, counterexamples and final comments on
this paper. A straightforward application is the obtention of the Abel means by subordination
to the Cesàro sums, as Theorem 5.1 shows. This point of view allows the improvement of
some previous results given in [26]. Some results presented in this paper are inspired by similar
ones obtained for α-times integrated semigroups, see [15]. In Section 5.2, we show a natural
connection between both concepts. In Section 5.3, we present some counterexamples of algebra
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homomorphisms defined on certain Banach algebras which cannot be extended to some larger
algebras. A future research line, the extension of the celebrated Katznelson-Tzafriri to (C,α)-
bounded operators, is commented on in Section 5.4.

Notation. We denote by {en}n∈N0 the set of canonical sequences given by en(j) = δn,j where
δn,j is the known Kronecker delta, i.e., δn,j = 1 if n = j and 0 in other case. Let X be a Banach

space and `p(X) the set of vector-valued sequences f : N0 → X such that
∞∑

n=0

‖f(n)‖p < ∞, for

1 ≤ p < ∞; and c0,0(X) the set of vector-valued sequences with finite support. When X = C
we write `p and c0,0 respectively. It is well-known that `1 is a Banach algebra with the usual
(commutative and associative) convolution product

(f ∗ g)(n) =
n∑

j=0

f(n− j)g(j), n ∈ N0.

We write f∗n = f ∗ f∗(n−1) for n ≥ 2, f∗1 = f and f∗0 = e0; in particular en = e∗n1 for n ∈ N0.
Consider φ : N0 → R+ a positive sequence, and `1

φ is the Banach spaced formed by complex
sequences f : N0 → C such that

∑
n∈N0

φ(n)|f(n)| < ∞.
Throughout the paper, we use the variable constant convention, in which C denotes a constant

which may not be the same from line to line. The constant is frequently written with subindexes
to emphasize that correspond to some parameters.

2. Weyl differences and convolution Banach algebras

In this section, we define certain spaces of sequences that correspond to an extension in two
different directions of those considered in the recent paper [17, Definition 4.2]. We consider a
positive order of regularity in Weyl differences (Definition 2.2) and different order of growth of
Weyl differences (Definition 2.8). These spaces correspond to Banach subalgebras of the space
`1 and are important to obtain a further characterization via homomorphisms for Cesàro sums
in the next section.

We consider the usual difference operator ∆f(n) = f(n + 1) − f(n), for n ∈ N0, its powers
∆k+1 = ∆k∆ = ∆∆k, for k ∈ N, and we write ∆0f = f and ∆1 = ∆. It is easy to see that

∆kf(n) =
k∑

j=0

(−1)k−j

(
k

j

)
f(n + j), n ∈ N0,

see for example [12, (2.1.1)] and then ∆m : c0,0 → c0,0 for m ∈ N0. In addition, for α > 0, we
consider the well-known scalar sequence (kα(n))∞n=0 defined by

kα(n) :=
Γ(n + α)

Γ(α)Γ(n + 1)
=

(
n + α− 1

α− 1

)
, n ∈ N0.

In the classical Zygmund’s monograph, the numbers kα(n) are called Cesàro numbers of order
α ([30, Vol. I, p.77]) and written by kα(n) = Aα−1

n . However the notation as function kα will
facilitate the understanding of this paper. The kernels kα may equivalently be defined by means
of the generating function:

(2.1)
∞∑

n=0

kα(n)zn =
1

(1− z)α
, |z| < 1, α > 0,
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and satisfy the semigroup property, that is, kα ∗ kβ = kα+β for α, β > 0. Furthermore, the
following equality holds: for α > 0,

(2.2) kα(n) =
nα−1

Γ(α)
(1 + O(

1
n

)), n ∈ N,

([30, Vol. I, p.77 (1.18)]) and kα is increasing (as a function of n) for α > 1, decreasing for
1 > α > 0 and k1(n) = 1 for n ∈ N ([30, Theorem III.1.17]). It is straightforward to check that
kα(n) ≤ kβ(n) for β ≥ α > 0 and n ∈ N0. The Gautschi inequality states that

(2.3) x1−s <
Γ(x + 1)
Γ(x + s)

< (x + 1)1−s, x ≥ 1, 0 < s < 1,

([18]), which implies that

(n + 1)α−1

Γ(α)
< kα(n) <

nα−1

Γ(α)
, n ∈ N, 0 < α < 1.

Note that when α = 0 we have

k0(n) := lim
α→0+

kα(n) = e0(n), n ∈ N0.

Lemma 2.1. For α > 0, there exists Cα > 0 such that

kα(2n) ≤ Cαkα(n), n ∈ N0.

In particular for 0 < α < 1, the following inequality holds

kα+1(2n) < 2αkα+1(n)
(

1 +
1− α

2(1 + α)

)α

, n ∈ N0.

Proof. The proof of the first inequality is straightforward by the inequality (2.2). To show the
second inequality, we use the known doubling equality for the Gamma function

Γ(z)Γ(z +
1
2
) = 21−2z√πΓ(2z), <z > 0,

to obtain that

kα+1(2n) =
Γ(α + 1 + 2n)

Γ(α + 1)Γ(2n + 1)
= 2αkα+1(n)

Γ(α
2 + 1

2 + n)Γ(α
2 + 1 + n)

Γ(α + 1 + n)Γ(1
2 + n)

, n ≥ 1.

We apply the Gautschi inequality (2.3) to get that

Γ(α
2 + 1

2 + n)
Γ(1

2 + n)
< (

α

2
+

1
2

+ n)
α
2 ,

Γ(α
2 + 1 + n)

Γ(α + 1 + n)
< (α + n)

−α
2 ,

for 0 < α < 1 and we conclude that

kα+1(2n) < 2αkα+1(n)
(

1 +
1− α

2(α + n)

)α
2

≤ 2αkα+1(n)
(

1 +
1− α

2(1 + α)

)α

,

for n ≥ 1 and 0 < α < 1. ¤
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The Cesàro sum of order α of a sequence f is defined by

∆−αf(n) := (kα ∗ f)(n) =
n∑

j=0

kα(n− j)f(j), n ∈ N0, α > 0.

Again we prefer to follow the notation ∆−αf(n) instead of Sα−1
n used in [30]. Note that

∆−α−βf = kβ ∗ (∆−αf) and then ∆−α∆−β = ∆−(α+β) = ∆−β∆−α for α, β > 0, for more
details see again [30, Vol. I, p.76-77]. Note also that lim

α→0+
∆−αf(n) = f(n) for all n ∈ N0 with

α > 0.
We write W = −∆, Wm = (−1)m∆m for m ∈ N. The operator W has an inverse in c0,0,

W−1f(n) =
∞∑

j=n

f(j) and its iterations are given by the sum

W−mf(n) =
∞∑

j=m

Γ(j − n + m)
Γ(j − n + 1)Γ(m)

f(j) =
∞∑

j=n

km(j − n)f(j), n ∈ N0,

for each scalar-valued sequence f such that
∞∑

n=0

|f(n)|nm < ∞, see for example [17, p.307].

These facts and the clear connection with the Weyl fractional calculus motivate the following
definition.

Definition 2.2. Let f : N0 → X and α > 0 be given. The Weyl sum of order α of f , W−αf , is
defined by

W−αf(n) :=
∞∑

j=n

kα(j − n)f(j), n ∈ N0,

whenever the right hand side makes sense. The Weyl difference of order α of f , Wαf , is defined
by

Wαf(n) := WmW−(m−α)f(n) = (−1)m∆mW−(m−α)f(n), n ∈ N0,

for m = [α] + 1, whenever the right hand side makes sense. In particular Wα : c0,0 → c0,0 for
α ∈ R.

Remark 2.3. Note that the definition of Wα is dependent of m = [α] + 1, but we can write

Wαf(n) = WmW−(m−α)f(n) = W lW−(l−α)f(n), n ∈ N0,

for l > m = [α] + 1 with l ∈ N, whenever the right hand side makes sense, since W−1 is the
inverse operator of W and Proposition 2.3 (v) holds.

Observe that if α ∈ N0, the Weyl difference of order α coincides with the definition given in
[17, Section 4]. Some general properties are shown in the following proposition.

Proposition 2.4. Let f ∈ c0,0(X). The following assertions hold:
(i) For α, β > 0, W−αW−βf = W−(α+β)f = W−βW−αf.
(ii) For α > 0 and n ∈ N0, we have lim

α→0+
W−αf(n) = f(n).

(iii) For α > 0, WαW−αf = W−αWαf = f.
(iv) For α > 0 and n ∈ N0, we have lim

α→0+
Wαf(n) = f(n).

(v) For all α, β ∈ R we have WαW βf = Wα+βf = W βWαf.
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Proof. (i) It is clear using the Fubini theorem and the semigroup property kα+β = kα ∗ kβ for
α, β > 0.

(ii) It is sufficient to apply that f has finite support and lim
α→0+

kα(j) = e0(j) for j ∈ N0.

(iii) We write m = [α] + 1. Applying part (i), for n ∈ N0, we have that

WαW−αf(n) = WmW−(m−α)W−αf(n) = WmW−mf(n) = f(n),

since W−m is the inverse of Wm in c0,0(X), see [17, Section 4]. On the other hand,

W−αWαf(n) = W−(α+1−m)W−(m−1)WmW−(m−α)f(n) = W−(α+1−m)W 1W−(m−α)f(n)

= W−(α+1−m)W−(m−α)f(n)−
∞∑

j=n

kα+1−m(j − n)W−(m−α)f(j + 1)

= W−1f(n)−
∞∑

j=n+1

kα+1−m(j − n− 1)W−(m−α)f(j)

= W−1f(n)−W−1f(n + 1) = f(n),

where we use part (i).
(iv) It is sufficient to apply that f has finite support and lim

α→0+
k1−α(j) = 1 for j ∈ N0.

(v) It is simple to check using the previous results. ¤

Example 2.5. (i) Let λ ∈ C\{0} be given and define pλ(n) := λ−(n+1) for n ∈ N0. An easy
computation shows that the sequence pλ is a pseudo-resolvent, that is, it satisfies the
Hilbert equation

(µ− λ)(pλ ∗ pµ)(n) = pλ(n)− pµ(n), n ∈ N0.

Moreover, the following identity holds

pλ ∗ (λe0 − e1) = e0, λ ∈ C\{0}.
We claim that the functions pλ are eigenfunctions for the operator Wα for α ∈ R and
|λ| > 1. In fact, we have, by (2.1), that

W−αpλ(n) = λ−(n+1)
∞∑

j=0

kα(j)λ−j =
λα

(λ− 1)α
pλ(n), n ∈ N0.

By Proposition 2.4 (iii), we obtain that

Wαpλ =
(λ− 1)α

λα
pλ, |λ| > 1,

proving the claim.
(ii) Let α ≥ 0 and n ∈ N0 be given. We define

hα
n(j) :=

{
kα(n− j), j ≤ n
0, j > n.

The functions hα
n are denoted by Γα−1

n for α ∈ N0 in [17, Section 4]. Note that hα
n ∈ c0,0

for n ∈ N0. Moreover, hα
n ∈ span{ej | 0 ≤ j ≤ n}, hα

0 = e0, hα
1 = αe0 + e1, h0

n :=
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limα→0+ hα
n = en, and

(2.4) hα
n(j) = kα(n− j) =

n∑

l=0

kα(n− l)el(j) =
n∑

l=0

kα(n− l)e∗l1 (j), 0 ≤ j ≤ n.

Then for all β ≥ 0 it is easy to check that W−βhα
n = hα+β

n , i.e.,

W−βhα
n(j) =

∞∑

i=j

kβ(i− j)hα
n(i) = hα+β

n (j), j ∈ N0.

Using Proposition 2.4 (iii), we obtain that

W βhα
n(j) = hα−β

n (j), j ∈ N0,

for 0 ≤ β ≤ α and n ∈ N0.

The following remark shows an interesting duality between the operator ∆−α and W−α.
Similar results may be found in [1, Section 4] and [2, Theorem 4.1 and 4.4].

Remark 2.6. Let f, g ∈ c0,0, we consider the usual duality product 〈 , 〉 given by

〈f, g〉 :=
∞∑

n=0

f(n)g(n).

By Fubini theorem, we get that 〈W−αf, g〉 = 〈f, ∆−αg〉 and consequently,

〈f, g〉 = 〈Wαf, ∆−αg〉 = 〈∆−αf, Wαg〉.
The next lemma includes an equality which is an important tool for further developments in

this paper. The proof runs parallel to the proof of the integer case given in [17, Lemma 4.4]
and, therefore, we do not include it here.

Lemma 2.7. Let f, g ∈ c0,0 and α ≥ 0 be given, then

Wα(f ∗ g)(n) =
n∑

j=0

Wαg(j)
n∑

p=n−j

kα(p− n + j)Wαf(p)

−
∞∑

j=n+1

Wαg(j)
∞∑

p=n+1

kα(p− n + j)Wαf(p).

The following definition is inspired by [15, Definition 1.3].

Definition 2.8. Let α > 0 be given. We say that a positive sequence φ belongs to the class
ωα,loc if there is a constant cφ > 0 such that

(2.5)




j∑

n=0

+
j+p∑

n=p+1


 kα(n)φ(j + p− n) ≤ cφφ(j)φ(p), 1 ≤ j ≤ p.

We denote by ωα the set of nondecreasing sequences φ ∈ ωα,loc which are of exponential type
and satisfy inf

n≥0
(kα+1(n))−1φ(n) > 0.

Examples of sequences in the set ωα are the following ones:
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(i) any nondecreasing sequence φ satisfying max(kα+1(n), φ(2n)) ≤ Mφ(n) for some M > 0
and for each n ≥ 0 (in particular φ(n) = nβ(1 + nµ) with β + µ ≥ α and β, µ ≥ 0 and
φ(n) = kγ(n) with γ ≥ α + 1).

(ii) φ(n) = kα+1(n)ρ(n), where ρ is a positive weight.
(iii) φ(n) = kν+1(n)eλn for all ν, λ > 0 and n ∈ N.

By the property kα(n) ∼ nα−1

Γ(α)
, see formula (2.2), equivalent examples may be given in terms of

nα−1. The particular case φ(n) = kα+1(n) will play a fundamental role in this paper. Observe
that in this case we obtain explicitly the value of the constant cφ in (2.5).

Lemma 2.9. For 0 < α < 1, the following inequality holds



j∑

n=0

+
j+p∑

n=p+1


 kα(n)kα+1(j+p−n) ≤

(
2α+1

(
1 +

1− α

2(1 + α)

)α

− 1
)

kα+1(j)kα+1(p), 1 ≤ j ≤ p.

Proof. For 1 ≤ j ≤ p, and α > 0, we have that
j∑

n=0

kα(n)kα+1(j + p− n) ≤ kα+1(j + p)
j∑

n=0

kα(n) = kα+1(j + p)kα+1(j)

j+p∑

n=p+1

kα(n)kα+1(j + p− n) ≤ kα+1(j − 1)
j+p∑

n=p+1

kα(n) ≤ kα+1(j)
(
kα+1(j + p)− kα+1(p)

)
.

As kα+1 is an increasing sequence, we have kα+1(j + p) ≤ kα+1(2p) for j ≤ p and we apply the
Lemma 2.1 to conclude the proof. ¤

Proposition 2.10. Let 0 < α ≤ β and φ ∈ ωα,loc be given. The following properties hold
(i) ωβ,loc ⊂ ωα,loc and ωβ ⊂ ωα.
(ii) (kα ∗ φ)(2n) ≤ cφφ2(n) for all n ∈ N.
(iii) kα(n) ≤ cφφ(n) ≤ an for all n ∈ N and some a > 0.
(iv) k2α(2n) ≤ cφ2(n) for all n ∈ N0 and some c > 0.
(v) φ(n + 1) ≤ Cφ(n) for some C > 0 independent of n ∈ N.
(vi) kβ ∈ ωα,loc if and only if β ≥ α + 1.

Proof. (i) Since kβ(n) ≥ kα(n) for all n ∈ N0, then ωβ,loc ⊂ ωα,loc and ωβ ⊂ ωα for β ≥ α > 0.
(ii) It is enough to take j = p in (2.5) in order to obtain the inequality.

(iii) By part (ii), we have that

kα(n)φ(n) ≤ (kα ∗ φ)(2n) ≤ cφφ2(n), n ∈ N,

and we get the first inequality. For n ∈ N, we apply the inequality (2.5) n − 1 times to obtain
that

cφφ(n) = cφkα(0)φ(n− 1 + 1) ≤ c2
φφ(1)φ(n− 1) ≤ (cφφ(1))n .

(iv) We combine parts (ii), (iii) and the semigroup property of kernels kα to conclude that

cφφ2(n) ≥ (kα ∗ φ)(2n) ≥ c′(kα ∗ kα)(2n) = c′k2α(2n), n ∈ N0,

for some c′ > 0.
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(v) Take j = 1 and p = n ∈ N in (2.5) to get

φ(n + 1) = kα(0)φ(n + 1) ≤
1∑

m=0

kα(m)φ(n + 1−m) ≤ cφφ(1)φ(n), n ∈ N.

(vi) If kβ ∈ ωα,loc then we can apply (2.2) and part (ii) to get

(kα ∗ kβ)(2n) = kα+β(2n) ∼ 2α+β−1 nα+β−1

Γ(α + β)
≤ c

n2(β−1)

Γ2(β)
, n ∈ N.

We conclude that β ≥ α + 1. Note that kα+1 ∈ ωα,loc and then kβ ∈ ωα,loc for β ≥ α + 1. By
application of part (i) we conclude the proof. ¤

For α ≥ 0, and φ ∈ ωα,loc, we define the application qφ : c0,0 → [0,∞) given by

qφ(f) :=
∞∑

n=0

φ(n)|Wαf(n)|, f ∈ c0,0.

Note that for α = 0 the above application corresponds to the usual norm in `1
φ. In the case of

φ = kα+1, we write qα instead of qkα+1 and q0 = ‖ ‖1 for α ≥ 0. By (2.2), the norm qα is
equivalent to the norm q̃α given by

q̃α(f) := |f(0)|+
∞∑

n=1

nα|Wαf(n)|.

The last formula was considered for the case α ∈ N0 in [17, Definition 4.2].
Part of the following result extends [17, Theorem 4.5]. Their proof is similar to those given

in [15, Proposition 1.4]. We include it in the following for the sake of completeness.

Theorem 2.11. Let α > 0 and φ ∈ ωα,loc be given. The application qφ defines a norm in c0,0

which satisfies

qφ(f ∗ g) ≤ Cφ qφ(f) qφ(g), f, g ∈ c0,0,

where the constant Cφ > 0 is independent of f and g.
We denote by τα(φ) the Banach algebra obtained as the completion of c0,0 in the norm qφ. In

the case that φ ∈ ωα then

(i) the operator ∆ is linear and bounded on τα(φ), in other words ∆ ∈ B(τα(φ)).
(ii) τα(φ) ↪→ τα(kα+1) ↪→ `1, and limα→0+ qα(f) = ‖f‖1, for f ∈ c0,0.
(iii) for 0 < α < β, τβ(kβ+1) ↪→ τα(kα+1).
(iv) for 0 < α < 1,

qα(f ∗ g) ≤
(

2α+1

(
1 +

1− α

2(1 + α)

)α

− 1
)

qα(f) qα(g), f, g ∈ τα(kα+1).
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Proof. It is clear that qα is a norm in c0,0. Now, applying Lemma 2.7 we have

qφ(f ∗ g) ≤
( ∞∑

n=0

n∑

j=0

n∑

p=n−j

+
∞∑

n=0

∞∑

j=n+1

∞∑

p=n+1

)
φ(n)kα(p− n + j)|Wαg(j)||Wαf(p)|

=
( ∞∑

j=0

∞∑

n=j

n∑

p=n−j

+
∞∑

j=1

j−1∑

n=0

∞∑

p=n+1

)
φ(n)kα(p− n + j)|Wαg(j)||Wαf(p)|

=
( ∞∑

j=0

∞∑

p=0

p+j∑

n=max(j,p)

+
∞∑

j=1

∞∑

p=1

min(j,p)−1∑

n=0

)
φ(n)kα(p− n + j)|Wαg(j)||Wαf(p)|

≤ φ(0)|Wαg(0)||Wαf(0)|+ cφ

∞∑

j=1

∞∑

p=1

φ(j)φ(p)|Wαg(j)||Wαf(p)| ≤ Cφ qφ(f) qφ(g)

where we use Fubini’s Theorem twice and the inequality (2.5) to show the first inequality.
Now let φ ∈ ωα be given.
(i) It is clear that ∆ is a linear operator. Moreover,

qφ(∆(f)) =
∞∑

n=0

φ(n)|Wαf(n)−Wαf(n + 1)| ≤ qφ(f) +
∞∑

n=1

φ(n− 1)|Wαf(n)| ≤ 2qφ(f),

for f ∈ τα(φ).
(ii) It is clear that τα(φ) ↪→ τα(kα+1) ↪→ `1. Moreover, by the Monotone Convergence Theo-

rem and Proposition 2.4 (ii), we have

lim
α→0+

qα(f) = lim
α→0+

∞∑

n=0

kα+1(n)|Wαf(n)| =
∞∑

n=0

|f(n)| = ‖f‖1, f ∈ c0,0.

(iii) Let f ∈ c0,0, and 0 < α < β be given, then

qα(f) =
∞∑

n=0

kα+1(n)|Wαf(n)| =
∞∑

n=0

kα+1(n)|
∞∑

j=n

kβ−α(j − n)W βf(j)|

≤
∞∑

j=0

|W βf(j)|
j∑

n=0

kβ−α(j − n)kα+1(n) =
∞∑

j=0

kβ+1(j)|W βf(j)| = qβ(f),

where we have applied Proposition 2.4 (v) and the semigroup property of kα.
(iv) This inequality follows from Lemma (2.8). ¤

Example 2.12. Note that {hα
n}n∈N0 ⊂ τα(φ) where φ ∈ ωα,loc. By Example 2.5 (ii) we have

qφ(hα
n) = φ(n) for all n ∈ N0. Then the series

∞∑

n=0

Wαf(n)hα
n converges on τα(φ) for every

f ∈ τα(φ). By Proposition 2.10 (iii)

|f(m)| ≤
∞∑

n=m

kα(n−m)|Wα(f)(n)| ≤ cφ

∞∑
n=m

φ(n)|Wα(f)(n)| ≤ cφqφ(f), m ∈ N0,
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whenever kα or φ is non-decreasing function, i.e., for α ≥ 1 or φ ∈ ωα. We conclude that

f =
∞∑

n=0

Wαf(n)hα
n on τα(φ).

Let φ ∈ ωα be such that φ(n) ≤ Can for some a > 1. Then pλ ∈ τα(φ) for |λ| > a, where the
sequences pλ are defined in Example 2.5 (i), and

qφ(pλ) ≤ C
|λ− 1|α

|λ|α(|λ| − a)
, |λ| > a.

In the particular case φ = kγ , we have pλ ∈ τα(kγ) for |λ| > 1 and, for γ ≥ α + 1, we obtain

(2.6) qkγ (pλ) =
|λ− 1|α|λ|γ−α−1

(|λ| − 1)γ
, |λ| > 1,

where we have applied Example 2.5 (i) and the formula (2.1).

3. Cesàro sums and algebra homomorphisms

In this section, and the following, we display our main results. The algebra structure of
Cesàro sums are presented in several ways: A functional equation (Theorem 3.3), an algebra
homomorphism (Theorem 3.5) and a characterization by means of pseudo-resolvents (Theorem
4.4). Note that this approach in fact characterizes the growth of Cesàro sums, as Corollary 3.6
and Corollary 3.7 for (C, α)-bounded operators show. We recall the following definition.

Definition 3.1. Given a bounded operator T ∈ B(X), the Cesàro sum of order α > 0 of T ,
{∆−αT (n)}n≥0 ⊂ B(X), is defined by

∆−αT (n)x := (kα ∗ T )(n)x =
n∑

j=0

kα(n− j)T jx, x ∈ X, n ∈ N0.

Note that we keep the notation T (n) = Tn for n ∈ N0.

Example 3.2. The canonical example for Cesàro sum of order α in Banach algebras τα(φ) (in
particular in `1) is the family {hα

n}n∈N0 given in Example 2.5(ii). Note that {hα
n}n∈N0

⊂ τα(φ)
with φ ∈ ωα,loc, see Example 2.12. If we denote E(n) = e∗n1 then by equation (2.4) we get
hα

n = ∆−αE(n) for n ∈ N0.

The following theorem characterizes sequences of operators which are Cesàro sums of some
order α > 0 for a fixed operator T .

Theorem 3.3. Let α > 0 and T, {Tn}n∈N0 ⊂ B(X). The following assertions are equivalent.

(i) Tn = ∆−αT (n) for n ∈ N0.
(ii) T1 = T + αI and the following functional equation holds:

(3.1) TnTm =
n+m∑
u=m

kα(n + m− u)Tu −
n−1∑

u=0

kα(n + m− u)Tu n ≥ 1, m ∈ N0.
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Proof. Assume (i). We prove the identity (3.1). Indeed, for n ∈ N and m ∈ N0, we have

TnTm =
n∑

j=0

m∑

i=0

kα(n− j)kα(m− i)T j+i =
n∑

j=0

m+j∑

u=j

kα(n− j)kα(m + j − u)T u

=
n∑

j=0

m+j∑

u=0

kα(n− j)kα(m + j − u)T u −
n∑

j=1

j−1∑

u=0

kα(n− j)kα(m + j − u)T u

=
n∑

j=0

kα(n− j)Tm+j −
n∑

j=1

j−1∑

u=0

kα(n− j)kα(m + j − u)T u.

Observe that
n∑

j=1

j−1∑

u=0

kα(n− j)kα(m + j − u)T u =
n−1∑

u=0

n∑

j=u+1

kα(n− j)kα(m + j − u)T u

=
n−1∑

u=0

n−1∑

l=u

kα(l − u)kα(m + n− l)T u =
n−1∑

l=0

kα(m + n− l)
l∑

u=0

kα(l − u)T u

=
n−1∑

l=0

kα(m + n− l)Tl.

and the equality (3.1) follows. This proves the claim. Conversely, assume (ii). Define

Sn :=
n∑

j=0

kα(n− j)T j , n ∈ N0.

It is clear that S0 = T0 = I (the equality T0 = I is easily deduced from the hypothesis) and
S1 = T + αI = T1. Inductively, we suppose that Sn = Tn. Then using that Sn satisfies (3.1), we
have that

Sn+1 + kα(1)Sn − kα(n + 1)I = SnS1 = TnT1 = Tn+1 + kα(1)Sn − kα(n + 1)I.

Then we conclude that Tn+1 = Sn+1, and consequently Tn = ∆−αT (n) for all n ∈ N0. ¤
Remark 3.4. If {Tn}n∈N0 ⊂ B(X) is a sequence of bounded operators which satisfies the equality
(3.1) then the operator defined by T := T1−αI is called the generator of {Tn}n∈N0 . By Theorem
3.3, Tn = ∆−αT (n) where T (n) = Tn for n ∈ N0. In particular, note that {hα

n}n∈N0 satisfies
(3.1) in τα(φ), see Example 3.2, and the generator is the element e1.

The following theorem is one of the main results of this paper.

Theorem 3.5. Let α > 0 and T ∈ B(X) be such that ‖∆−αT (n)‖ ≤ Cφ(n) for n ∈ N0 with
φ ∈ ωα,loc and C > 0. Then there exists a bounded algebra homomorphism θ : τα(φ) → B(X)
given by

θ(f)x :=
∞∑

n=0

Wαf(n)∆−αT (n)x, x ∈ X, f ∈ τα(φ).

Furthermore, the following properties hold.
(i) θ(hα

n) = ∆−αT (n) for all n ∈ N0. In particular, θ(e0) = I and θ(e1) = T .
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(ii) For each f ∈ τα(φ) such that ∆f ∈ τα(φ) we have Tθ(∆f)x = (I−T )θ(f)x−f(0)x, x ∈
X.

(iii) If sup
n∈N0

(kβ−α ∗ φ)(n)
ψ(n)

< ∞, for some 0 < α < β and ψ ∈ ωβ,loc, then τβ(ψ) ↪→ τα(φ)

and

θ(f)x =
∞∑

n=0

W βf(n)∆−βT (n)x, x ∈ X, f ∈ τβ(ψ).

(iv) If ‖T‖ ≤ a for some a > 0, then θ(f)x =
∑∞

n=0 f(n)Tn(x), for f ∈ τα(φ) ∩ `1
an . In

particular, θ(pλ) = (λ− T )−1 for each |λ| > a.

Proof. Note that the map θ is well-defined, linear and continuous. Moreover, ‖θ(f)x‖ ≤
Cqα(f)‖x‖, for all f ∈ τα(φ) and x ∈ X. To see that θ is an algebra homomorphism is suf-
ficient to prove that θ(f ∗ g) = θ(f)θ(g) for f, g ∈ c0,0. Indeed, by Lemma 2.7, we get that

θ(f ∗ g)x =
∞∑

n=0

Wα(f ∗ g)(n)∆−αT (n)x

=
∞∑

n=0

n∑

j=0

Wαg(j)
n∑

p=n−j

kα(p− n + j)Wαf(p)∆−αT (n)x

−
∞∑

n=0

∞∑

j=n+1

Wαg(j)
∞∑

p=n+1

kα(p− n + j)Wαf(p)∆−αT (n)x.

We apply Fubini theorem to get that

θ(f ∗ g)x =
∞∑

j=0

Wαg(j)
j∑

p=0

Wαf(p)
p+j∑

n=j

kα(p− n + j)∆−αT (n)x

+
∞∑

j=0

Wαg(j)
∞∑

p=j+1

Wαf(p)
p+j∑
n=p

kα(p− n + j)∆−αT (n)x

−
∞∑

j=1

Wαg(j)
j∑

p=1

Wαf(p)
p−1∑

n=0

kα(p− n + j)∆−αT (n)x

−
∞∑

j=1

Wαg(j)
∞∑

p=j+1

Wαf(p)
j−1∑

n=0

kα(p− n + j)∆−αT (n)x.
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Therefore

θ(f ∗ g)x =
∞∑

j=1

Wαg(j)
j∑

p=1

Wαf(p)
(p+j∑

n=j

−
p−1∑

n=0

)
kα(p− n + j)∆−αT (n)x + Wαg(0)Wαf(0)x

+
∞∑

j=0

Wαg(j)
∞∑

p=j+1

Wαf(p)
(p+j∑

n=p

−
j−1∑

n=0

)
kα(p− n + j)∆−αT (n)x

=
∞∑

j=1

Wαg(j)
j∑

p=1

Wαf(p)∆−αT (p)∆−αT (j)x + Wαg(0)Wαf(0)x

+
∞∑

j=0

Wαg(j)
∞∑

p=j+1

Wαf(p)∆−αT (p)∆−αT (j)x = θ(f)θ(g)x,

where we have used the identity (3.1). This proves the claim. We now verify that the properties
(i)− (iv) hold.

(i) Note that Wαhα
n = en, see Example 2.5 (ii), and then θ(hα

n) = ∆−αT (n) for n ∈ N0. As
e0 = h0 and e1 = hα

1 − αhα
0 , it is clear that θ(e0) = I and θ(e1) = T .

(ii) Let f ∈ τα(φ) be such that ∆f ∈ τα(φ) and x ∈ X. We have that

Tθ(∆f)x = T

( ∞∑

n=0

Wαf(n + 1)∆−αT (n)x−
∞∑

n=0

Wαf(n)∆−αT (n)x
)

=
∞∑

n=0

Wαf(n + 1)
(
∆−αT (n + 1)x− kα(n + 1)x

)− T
∞∑

n=0

Wαf(n)∆−αT (n)x

= (I − T )θ(f)x−Wαf(0)∆−αT (0)x−
∞∑

n=0

Wαf(n + 1)kα(n + 1)x

= (I − T )θ(f)x−
∞∑

n=0

Wαf(n)kα(n)x = (I − T )θ(f)x− f(0)x,

where we have applied that T∆−αT (n) = ∆−αT (n+1)−kα(n+1) and
∞∑

n=0

Wαf(n)kα(n) = f(0)

for f ∈ τ(φ).

(iii) Suppose that sup
n∈N0

(kβ−α ∗ φ)(n)
ψ(n)

< ∞ for some 0 < α < β and ψ ∈ ωβ,loc, then it is

straightforward to check that τβ(ψ) ↪→ τα(φ) and
∞∑

n=0

Wαf(n)∆−αT (n)x =
∞∑

n=0

W βf(n)∆−βT (n)x, f ∈ τβ(ψ), x ∈ X,

where we have applied Proposition 2.4 (v) and Remark 2.6.
(iv) Let a > 0 be such that ‖T‖ ≤ a. Then σ(T ) ⊂ {z ∈ C | |z| ≤ a}. For f ∈ τα(φ)∩ `1

an , we
apply Remark 2.6 to get

θ(f)x =
∞∑

n=0

f(n)Tn(x), x ∈ X.
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In particular pλ ∈ τα(φ)∩`(an) for |λ| > a and θ(pλ)x =
1
λ

∞∑

n=0

Tn

λn
x = (λ−T )−1x for x ∈ X. ¤

Corollary 3.6. Let α > 0, φ ∈ ωα and θ : τα(φ) → B(X) be an algebra homomorphism. Then
there exists T ∈ B(X) such that

θ(f)x =
∞∑

n=0

Wαf(n)∆−αT (n)x, f ∈ τα(φ), x ∈ X;

in particular θ(hα
n) = ∆−αT (n) for n ∈ N0 and θ(pλ) = (λ− T )−1 for |λ| > ‖T‖.

Proof. Take T := θ(e1). Note that e1 = hα
1 − αhα

0 , see Example 2.5 (ii), and hα
n = ∆−αE(n) for

n ∈ N0 where E(n) = e∗n1 , see Example 3.2. By Example 2.12, f =
∞∑

j=0

Wαf(n)hα
n for f ∈ τα(φ).

We apply the continuity of θ to get

θ(hα
n)x =

n∑

j=0

kα(n− j) (θ(e1))
j x = ∆−αT (n)x

and hence

θ(f)x =
∞∑

n=0

Wαf(n)θ(hα
n)x =

∞∑

n=0

Wαf(n)∆−αT (n)x,

for x ∈ X. By Theorem 3.5 (iv), we conclude the proof. ¤

By Theorem 3.5 and Corollary 3.6, we obtain the following characterizations of (C, α)-bounded
and power-bounded operators.

Corollary 3.7. Let T ∈ B(X) and α > 0 be given. The following assertions are equivalent:

(i) T is a (C, α)-bounded operator.
(ii) There exists a bounded algebra homomorphism θ : τα(kα+1) → B(X) such that θ(e1) = T.

In the limit case, the following assertions are equivalent:

(a) T is power bounded.
(b) There exists a bounded algebra homomorphism θ : `1 → B(X) such that θ(e1) = T.
(c) For any 0 < α < 1, there exist bounded algebra homomorphisms θα : τα(kα+1) → B(X)

such that θα(e1) = T and sup
0<α<1

‖θα‖ < ∞.

Proof. Due to the previous results, we only have to check that (c) implies (b). Indeed, since the
map θα is an algebra homomorphism then θα(en) = Tn, θα(f) is well defined for f ∈ c0,0 and
is independent of α. Let C > 0 be such that sup0<α<1 ‖θα‖ < C. We define θ(f) := θα(f) for
f ∈ c0,0 and some given α ∈ (0, 1). Then ‖θ(f)‖ = ‖θα(f)‖ ≤ C qα(f) for f ∈ c0,0. By Theorem
2.11 (ii), we get that ‖θ(f)‖ ≤ C‖f‖1, for f ∈ c0,0. The result now follows by an argument of
density. ¤
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4. The Z-transform and resolvent operators

Let f : N0 → X be a scalar sequence on a Banach space X. We recall that the Z-transform
of a given sequence f : N0 → X is defined by

(4.1) f̃(z) =
∞∑

n=0

f(n)z−n,

for all z such that this series converges. The set of numbers z in the complex plane for which
the series (4.1) converges is called the region of convergence of f̃ . The uniqueness of the inverse
Z-transform may be established as follows: suppose that there are two sequences f , and g with
the same Z-transform, that is,

∞∑

n=0

f(n)z−n =
∞∑

n=0

g(n)z−n, |z| > R.

It follows from Laurent’s theorem that f(n) = g(n) for n ∈ N0.
Let φ : N0 → (0,∞) be a sequence such that φ(n) ≤ Can for some C > 0 and a > 0. To

follow the notation given in [8], we write ω = log(a) where ω is a bound for the counting measure
supported on N0, i.e., ελ ∈ `1

φ for λ > ω where ελ(n) := e−λn and n ∈ N0. Let C∞((ω,∞), X)
be the space of X-valued functions on (ω,∞) infinitely differentiable in the norm topology of
X. For r ∈ C∞((ω,∞), X), set

‖r‖W,φ,ω := sup{‖r
(k)(λ)‖

‖βk,λ‖1,φ
| k ∈ N0, λ > ω},

where βk,λ(n) = nke−λn for n ∈ N0 and λ > ω. The Widder space C∞
W ((ω,∞), X; φ) is defined

by
C∞

W ((ω,∞), X; φ) = {r ∈ C∞((ω,∞), X) | ‖r‖W,φ,ω < ∞}.
Endowed with the norm ‖ · ‖W,φ,ω, the space C∞

W ((ω,∞), X; φ) is a Banach space, see more
details in [8, Section 1]. A direct consequence of [8, Theorem 1.2] is the following result.

Theorem 4.1. Let φ : N0 → (0,∞) be a sequence such that φ(n) ≤ Can for some C > 0 and
a > 0. For a vector-valued sequence f : N0 → X the following assertions are equivalent.

(i) sup
n∈N0

‖f(n)‖
φ(n)

< ∞.

(ii) There exists θ : `1
φ → X such that θ(λpλ) = f̃(λ) for λ > a.

(iii) f̃ ◦ exp ∈ C∞
W ((log(a),∞), X; φ).

Proof. (i) =⇒ (ii) The mapping defined by θ(g) :=
∑∞

n=0 g(n)f(n) where g ∈ `1
φ satisfies

the required condition. (ii) =⇒ (i) We define h(n) := θ(en) for n ∈ N0. It is clear that

sup
n∈N0

‖h(n)‖
φ(n)

< ∞, and

f̃(λ) = θ(λpλ) =
∑

n∈N0

θ(en)λn = h̃(λ), |λ| > a,

from which we conclude that h(n) = f(n) for all n ∈ N0. This proves (i). Now we prove that
(ii) =⇒ (iii). Due to [8, Theorem 1.2], we have

θ(εµ) = θ(exp(µ)pexp(µ)) = (f̃ ◦ exp)(µ), µ > log(a),
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and (iii) is proved. (iii) =⇒ (ii) Suppose that f̃ ◦ exp ∈ C∞
W ((log(a),∞), X;φ). Again by [8,

Theorem 1.2], there exists a bounded homomorphism θ : `1
φ → X such that θ(εµ) = (f̃ ◦ exp)(µ)

for µ > log(a). Since εµ(n) = e−µn = eµpeµ(n), we conclude that θ(λpλ) = f̃(λ) for λ > a. ¤

Remark 4.2. Note that Theorem 4.1 is closely connected to [8, Theorem 4.2], where the repre-
sentability of functions of the Widder space C∞

W ((ω,∞), X;m) through functions of L∞(R+, X;m)
is proved under the assumption that the Banach space X has the Radon-Nikodym property
(RNP). The RNP is a well-known property in the theory of Banach spaces. This property is
also true for closed subspaces (hereditary property) and is enjoyed by any reflexive space, any
separable dual space, and any `1(Γ) space, where Γ is a set. See definitions and more details in
[3, Section 1.2].

In the well-known scalar version, namely X = C, the following Z-transforms are obtained
directly:

ẽn(z) = z−n, z 6= 0, n ∈ N0;

k̃α(z) =
zα

(z − 1)α
, |z| > 1;

p̃λ(z) =
z

zλ− 1
, |z| > 1

|λ| , λ ∈ C\{0},

h̃α
n(z) =

n∑

j=0

kα(n− j)z−j , z 6= 0.

It is also well-known that

(4.2) (̃f ∗ g)(z) = f̃(z)g̃(z),

for all z such that f̃(z) and g̃(z) exist. For properties on the Z-transform we refer, for instance,
to the book [12, Chapter 6]. In particular, given α > 0 and f : N0 → X such that f̃(z) exists
for |z| > R, then

˜(∆−αf)(z) =
zα

(z − 1)α
f̃(z), |z| > max{R, 1}.

We denote by nf(m) := f(n + m) for all m,n ∈ N0. The next technical lemma for the Z-
transform will be used in the forthcoming Theorem 4.4. We observe that similar results hold
for the Laplace transform, see for example [24, Proposition 4.1].

Lemma 4.3. Let X be a Banach space, f : N0 → C an scalar-valued sequence and S : N0 →
B(X) an operator-valued sequence. Then

1
µ− λ

f̃(µ)
(

µS̃(λ)x− λS̃(µ)x
)

=
∞∑

n=0

λ−n
∞∑

m=0

µ−m(f ∗ nS)(m)x, x ∈ X,

1
µ− λ

(
µf̃(λ)− λf̃(µ)

)
S̃(µ)x =

∞∑

n=0

λ−n
∞∑

m=0

µ−m( nf ∗ S)(m)x, x ∈ X,

for all |λ| > |µ| sufficiently large.
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Proof. To show the first identity, note that,

ñS(µ)x =
∞∑

m=0

µ−mS(m + n)x = µn
∞∑

j=n

µ−jS(j)x = µn

(
S̃(µ)x−

n−1∑

j=0

µ−jS(j)x
)

,

for x ∈ X and n ≥ 1. By (4.2) we get
∞∑

n=0

λ−n
∞∑

m=0

µ−m(f ∗ nS)(m)x = f̃(µ)
∞∑

n=0

λ−n
ñS(µ)x = f̃(µ)

(
S̃(µ)x +

∞∑

n=1

λ−n
ñS(µ)x

)

= f̃(µ)S̃(µ)x
∞∑

n=0

(
µ

λ

)n

− f̃(µ)
∞∑

n=1

(
µ

λ

)n n−1∑

j=0

µ−jS(j)x.

Finally, from the identities

∞∑

n=1

(
µ

λ

)n n−1∑

j=0

µ−jS(j)x =
∞∑

j=0

µ−jS(j)x
∞∑

n=j+1

(
µ

λ

)n

=
µ

λ− µ
S̃(λ)x,

we conclude that
∞∑

n=0

λ−n
∞∑

m=0

µ−m(f ∗ nS)(m)x =
1

λ− µ
f̃(µ)

(
λS̃(µ)x− µS̃(λ)x

)
,

for all |λ| > |µ| sufficiently large and x ∈ X. The second identity in the Lemma can be proved
similarly. ¤

Theorem 4.4. Let α ≥ 0, φ ∈ ωα, a > 1 be given and let X be a Banach space. Suppose that
{Tn}n∈N0 ⊂ B(X) is such that T0 = I and satisfies ‖Tn‖ ≤ Cφ(n) ≤ C ′an for all n ∈ N0 with
C, C ′ > 0. The following statements are equivalent:

(i) The operator-valued sequence {Tn}n∈N0 satisfies the equation (3.1).
(ii) There exists a bounded algebra homomorphism θ : τα(φ) → B(X) such that θ(hα

n) = Tn

for n ∈ N0.
(iii) The family {R(λ)}|λ|>a defined by

R(λ)x :=
(λ− 1)α

λα+1

∞∑

n=0

λ−nTn(x), |λ| > a, x ∈ X,

is a pseudo-resolvent.

In these cases the generator of {Tn}n∈N0, defined by T := T1 − αI (see Remark 3.4), satisfies
that Tn = ∆−αT (n) for n ∈ N0, θ(e1) = T , {λ ∈ C | |λ| > a} ⊂ ρ(T ) and

R(λ) = (λ− T )−1, |λ| > a.

Proof. The proof (i)⇒(ii) is a direct consequence of Theorem 3.3 and Theorem 3.5. To show
that (ii)⇒(iii), we use Corollary 3.6. Finally we prove (iii)⇒(i). It is clear that

R(λ) =
T̃(λ)

λk̃α(λ)
, |λ| > a,
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where T = {Tn}n∈N0 and T̃ is given by (4.1). Since {R(λ)}|λ|>a is a pseudo-resolvent, then

(µ− λ)
T̃(λ)T̃(µ)

λk̃α(λ)µk̃α(µ)
=

T̃(λ)

λk̃α(λ)
− T̃(µ)

µk̃α(µ)
, |λ|, |µ| > a, µ 6= λ,

so

T̃(λ)T̃(µ) =
1

µ− λ

(
µk̃α(µ)T̃(λ)− λk̃α(λ)T̃(µ)

)
, |λ|, |µ| > a, µ 6= λ.

On the other hand, note that the condition (3.1) can be rewritten as

(kα ∗ nT)(m)− ( nkα ∗ T)(m) + kα(n)Tm =
n+m∑
u=n

kα(n + m− u)Tu −
m−1∑

u=0

kα(n + m− u)Tu,

for m ≥ 1 and n ≥ 0. We apply Lemma 4.3 in order to obtain, after a simple algebraic manipu-
lation, that

∞∑

n=0

λ−n
∞∑

m=0

µ−m ((kα ∗ nT)(m)− ( nkα ∗ T)(m) + kα(n)Tm) =
µk̃α(µ)T̃(λ)− λk̃α(λ)T̃(µ)

µ− λ
,

for |λ|, |µ| > a, and µ 6= λ. Then we conclude that {Tn}n∈N0 satisfies (3.1), as consequence of
the injectivity of the double Z-transform. Finally, by Corollary 3.6

R(λ) = θ(pλ) = (λ− T )−1, |λ| > a,

and we finish the proof. ¤

5. Applications, examples and final comments

In this last section, we present applications of, comments on, examples and counterexamples
to the results presented in this paper.

5.1. Bounds for Abel means. Given T ∈ B(X) and 0 ≤ r < 1 we recall that the Abel mean
of order r to the operator T , denoted by Ar(T ), is defined by

Ar(T )x := (1− r)
∞∑

n=0

rnTn(x), x ∈ X,

whenever this series converges, see for example [26]. Denoting r(T ) = limn→∞‖Tn‖ 1
n the spectral

radius of T, we have for 0 < r < 1
r(T ) that 1

r ∈ ρ(T ) and

Ar(T ) =
(1− r)

r
(
1
r
− T )−1, 0 < r < min{1,

1
r(T )

}.

The next theorem improves [26, Proposition 2.1 (i)] given there for α ∈ {0, 1}.
Theorem 5.1. Take α ≥ 0 and T ∈ B(X). Then

Ar(T )x = (1− r)α+1
∞∑

n=0

rn∆−αT (n)x, 0 ≤ r < min{1,
1

r(T )
}.

In the case that ‖∆−αT (n)‖ ≤ Ckγ+1(n) for n ≥ 1 and γ ≥ α then we have

‖Ar(T )‖ ≤ C(1− r)−(γ−α), 0 ≤ r < 1.

In particular, if T is a (C,α)-bounded operator then sup0≤r<1 ‖Ar(T )‖ < ∞.
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Proof. Let α ≥ 0 be given and p 1
r
(n) = rn+1 for 0 < r < 1. By Remark 2.6, we have that

Ar(T )x = (1− r)
∞∑

n=0

rnTn(x) =
1− r

r

∞∑

n=0

Wαp 1
r
(n)∆−αT (n)x

=
(1− r)α+1

r

∞∑

n=0

p 1
r
(n)∆−αT (n)x = (1− r)α+1

∞∑

n=0

rn∆−αT (n)x,

where we have used Example 2.5 (i) for 0 < r < min{1, 1
r(T )}. For r = 0 is obvious.

In the case that ‖∆−αT (n)‖ ≤ Ckγ+1(n) for n ≥ 1 and γ ≥ α, there exists a bounded algebra
homomorphism θ : τα(kγ+1) → B(X) such that

θ(f) =
∞∑

n=0

Wαf(n)∆−αT (n), x ∈ X, f ∈ τα(kγ+1),

see Theorem 3.5. Note that p 1
r
∈ τα(kγ+1) and Ar(T ) = 1−r

r θ(p 1
r
), for 0 < r < 1. By formula

(2.6), we obtain that

‖Ar(T )‖ ≤ C
1− r

r
qkγ+1(p 1

r
) = C

1− r

r

r

(1− r)γ+1−α
=

C

(1− r)γ−α
, 0 < r < 1,

and we conclude the proof. ¤

Remark 5.2. If we consider ‖Tn‖ ≤ Cnγ , with γ ≥ 0, and using the estimate nγ ≤ Γ(γ +
1)kγ+1(n) which follows easily from (2.3), then we get that

‖Ar(T )‖ ≤ CΓ(γ + 1)(1− r)−γ ,

which improves the bound of [26, Proposition 2.1 (i) (2.3)]. One can use similar arguments to
improve the bound of [26, Proposition 2.1 (i) (2.4)].

Remark 5.3. An inverse result exists on Banach lattices, see [26, Corollary 3.2], which proves
that for any α > −1 and a positive bounded operator T, {(1− r)αAr(T ), 0 ≤ r < 1} is bounded
if only if ‖∆−1T (n)‖ ≤ C(n + 1)α, n ∈ N0. In particular, T is Abel-mean bounded if and only
if it is (C, 1)-bounded. Note that there are examples of positive (C, 1)-bounded operators in
Banach lattices which are not power bounded, see the remarks following [26, Corollary 3.2].

5.2. α-Times integrated semigroups and Cesàro sums. Now, let A be a closed linear
operator on X, α > 0 and {Sα(t)}t≥0 ⊂ B(X) an α-times integrated semigroup generated by A,
that is, Sα(0) = 0, the map [0,∞) → X, r 7→ Sα(r)x is strongly continuous and

Sα(t)Sα(s)x =
1

Γ(α)

(∫ t+s

t
(t + s− r)α−1Sα(r)xdr −

∫ s

0
(t + s− r)α−1Sα(r)xdr

)
, x ∈ X,

for t, s > 0; for α = 0, {S0(t)}t≥0 is a usual C0-semigroup, S0(0) = I and S0(t + s) = S0(t)S0(s)
for t, s > 0. In the case that {Sα(t)}t≥0 is a non-degenerate family and ‖Sα(t)‖ ≤ Ceωt for
C > 0, ω ∈ R, then there exists a closed operator, (A,D(A)), called the generator of {Sα(t)}t≥0,
such that

(5.1) (λ−A)−1x = λα

∫ ∞

0
e−λtSα(t)xdt, <λ > ω, x ∈ X.
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Moreover the following integral equality holds

(5.2) A

∫ t

0
Sα(s)xds = Sα(t)x− tα

Γ(α + 1)
x, t > 0, x ∈ X.

For more details see [22].

Theorem 5.4. Suppose that {Sα(t)}t≥0 is an α-times integrated semigroup generated by (A,D(A))
such that ‖Sα(t)‖ ≤ Ceωt with 0 ≤ ω < 1. Then 1 ∈ ρ(A) and for R := (1− A)−1, R(n) = Rn

we have

∆−αR(n)x = (I −A)
∫ ∞

0

e−ttn

n!
Sα(t)xdt, n ∈ N0,

=
∫ ∞

0

e−ttn−1

(n− 1)!
Sα(t)xdt + kα+1(n)x− kα+1(n− 1)x, n ≥ 1, x ∈ X,

In particular if {Sα(t)}t≥0 has temperated growth, i.e. ‖Sα(t)‖ ≤ Ctα for t > 0, then (I −A)−1

is a (C, α)-bounded operator.

Proof. Let λ ∈ ρ(A) be given. We have

(−1)n

n!
dn

dλn
(λ−α(λ−A)−1) =

n∑

j=0

kα(n− j)
λα+n−j

(λ−A)−j−1.

On the other hand, for <λ > ω, we apply formula (5.1) to get that
(−1)n

n!
dn

dλn
(λ−α(λ−A)−1)x =

∫ ∞

0

tn

n!
e−λtSα(t)x dt, x ∈ X.

Finally, we set λ = 1 to conclude the first equality. Now for n ≥ 1, we have that

∆−αR(n)x =
∫ ∞

0

e−ttn

n!
Sα(t)xdt + A

∫ ∞

0

e−ttn−1

(n− 1)!

(
1− t

n

) ∫ t

0
Sα(s)xdsdt

=
∫ ∞

0

e−ttn−1

(n− 1)!
Sα(t)xdt + kα+1(n)x− kα+1(n− 1)x, x ∈ X,

where we applied the equality (5.2).
In the case that ‖Sα(t)‖ ≤ Ctα, we use the second equality and that the sequence kα+1 is

increasing to conclude that sup
n∈N0

‖∆−αR(n)‖
kα+1(n)

< ∞ and (I −A)−1 is a (C, α)-bounded operator.

¤
Classical examples of generators of temperated α-times integrated semigroups are differential

operators A such that their symbol Â is of the form Â = ia where a is a real elliptic homogeneous
polynomial on Rn or a ∈ C∞(Rn\{0}) is a real homogeneous function on Rn such that if a(t) = 0
then t = 0, see [21, Theorem 4.2], and other different examples in [21, Section 6].

Remark 5.5. In the case of uniformly bounded C0-semigroups, i.e. {T (t)}t≥0 ⊂ B(X) such that
supt>0 ‖T (t)‖ < ∞, the resolvent (1−A)−1 is power-bounded due to

(1−A)−nx =
∫ ∞

0

tn−1

(n− 1)!
e−tT (t)xdt, x ∈ X.

Note that Theorem 5.4 includes a natural extension of this fact: the resolvent (1 − A)−1 is a
(C, α)-bounded operator when A generates a temperated α-times integrated semigroup.
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We may also consider the homomorphism θ defined in Theorem 3.5, and in this case

θ(∆f)x = −Aθ(f)x− (I −A)f(0)x, f ∈ τα(kα+1), x ∈ D(A),

when A generates a temperated α-times integrated semigroup. This equality shows that if we
know the generator A, we can transfer properties between f and ∆f for sequences in τα(kα+1).

5.3. Counterexamples of bounded homomorphisms.

Example 5.6. In [9, Section 2] there is an example of a positive, Cesàro bounded but not power
bounded operator T on the space `1. As the author comments in [10, Section 4. Examples],
one has ‖Tn‖1 ≤ Kn/ ln(n) where K is the uniform bound of the Cesàro averages of T . In this
example T is also a contraction in `∞. In [13, Section (VI)], it is proved that supn≥0 ‖Tn‖p ≥
(2k)

1
p for any k ≥ 1 and 1 ≤ p < ∞. We conclude that T is not power bounded in `p (1 ≤ p < ∞)

and T is Cesàro bounded in `p (1 ≤ p ≤ ∞) . By Corollary 3.7, there exists a bounded
homomorphism θ : τ1(k2) → B(`p) such that θ(e1) = T which extends to θ : `1 → B(`p) if and
only p = ∞.

Example 5.7. In [28], a simple matrix construction, which unifies different approaches to the
Ritt condition and ergodicity of matrix semigroups, is studied in detail. Consider the Banach
space X := X ⊕X with norm

‖x1 ⊕ x2‖X⊕X :=
√
‖x1‖2 + ‖x2‖2, x1 ⊕ x2 ∈ X.

Let the bounded linear operator T on X be defined by the operator matrix

T :=
(

T T − I
0 T

)

where T ∈ B(X). In [28, Lemma 2.1], some connected properties between T and T are given.
Now we consider X = `2 and the backward shift operator T ∈ L(`2) defined by

T (x)(n) := x(n + 1), x ∈ `2, n ∈ N0.

By [28, Example 3.1], ‖Tn‖ ≥ 2n and T is a (C, 1)-bounded operator. We apply Corollary 3.7 to
conclude that there exists an algebra homomorphisms θ : τ1(k2) → B(X) such θ(e1) = T which
does not extend continuously to `1. In [28, Remark 3.2], the growth ‖Tn‖ ≥ 2n is pointed at as
the fastest possible for a Cesàro bounded operator.

Example 5.8. In [26, Proposition 4.3], the following example is given. For any γ with 0 < γ < 1,
there exists a positive linear operator T on an L1-space such that

sup
n≥0

‖∆−γT (n)
kγ+1(n)

‖ = ∞, but sup
n≥0

‖∆−βT (n)
kβ+1(n)

‖ < ∞ for all β > γ.

By Corollary 3.7, we conclude that there exists a bounded algebra homomorphism θ such that
θ : τβ(kβ+1) → B(X) for all β > γ, θ(e1) = T , and the homomorphism θ does not extend
continuously to the algebra τγ(kγ+1) with 0 < γ < 1.

Example 5.9. In [26, Proposition 4.4 (i)], the following operator is constructed. Let dimX = ∞.
For any integer j ≥ 0, there exists a bounded linear operator T on X such that

sup
n≥0

‖∆−(j+1)T (n)
kj+2(n)

‖ < ∞, but sup
n≥0

‖∆−γT (n)
kγ+1(n)

‖ = ∞ for 0 ≤ γ < j + 1.
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By Corollary 3.7, we conclude that there exists a bounded algebra homomorphism θ such that
θ : τ j+1(kj+2) → B(X), θ(e1) = T , and the homomorphism θ does not extend continuously to
the algebra τγ(kγ+1) with 0 ≤ γ < j + 1.

Example 5.10. In [26, Proposition 4.4 (ii)], the following operator is constructed. Let dimX = ∞.
There exists a bounded linear operator T on X with r(T ) = 1, ‖T‖ = 2, and

‖Ar(T )‖ ≤ 1− r, 0 < r < 1; and sup
n≥0

‖∆−jT (n)
kj+1(n)

‖ = ∞, for j ≥ 1.

Since kj(n) ≤ kj+1(n) for n ≥ 0, we also conclude that ‖∆−jT (n)
kj(n)

‖ = ∞ for j ≥ 1 and the

converse of Theorem 5.1 does not hold for γ < α.

5.4. Application to Katznelson-Tzafriri type theorems. Let A(T) be the regular convo-
lution Wiener algebra formed by all continuous periodic functions f(t) =

∑∞
n=−∞ f̂(n)eint, t ∈

[−π, π], where {f̂(n)}n∈Z are the Fourier coefficients of f, that is

f̂(n) =
1
2π

∫ π

−π
f(t)e−int dt, n ∈ Z,

with the norm ‖f‖A(T) :=
∑∞

n=−∞ |f̂(n)|, and A+(T) be the closed convolution subalgebra of
A(T) where the functions satisfy that f̂(n) = 0 for n < 0. Note that both A(T) and `1

Z, and
A+(T) and `1 are isometrically isomorphic, where `1

Z denotes the complex summable sequences
indexed by Z.

Katznelson and Tzafriri proved in 1986 the following well-known theorem: if T ∈ B(X) is
power-bounded and f ∈ A+(T) is of spectral synthesis in A(T) with respect to σ(T ) ∩ T, then

lim
n→∞‖T

nθ(f̂)‖ = 0,

see [23, Theorem 5]. Moreover, for T ∈ B(X) a power-bounded operator, one has lim
n→∞‖T

n −
Tn+1‖ = 0 if and only if σ(T ) ∩ T ⊆ {1}, see [23, Theorem 1].

The authors have got some similar results for (C, α)-bounded operators, which will appear in
a forthcoming paper. We define Aα(T) a new regular Wiener algebra contained in A(T), and
Aα

+(T) a convolution closed subalgebra of Aα(T), which is isometrically isomorphic to τα(kα+1).
The result states that if α > 0, T ∈ B(X) is a (C, α)-bounded operator and f ∈ Aα

+(T) is of
spectral synthesis in Aα(T) with respect to σ(T ) ∩ T, then

lim
n→∞

1
kα+1(n)

‖∆−αT (n)θ(f̂)‖ = 0.

On the continuous case, Katznelson-Tzafriri theorems have been proved for C0-semigroups
and extended later for α-times integrated semigroups, see [14] and [16] respectively.
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443-455.

[11] E. Ed-Dari. On the (C, α) Cesàro bounded operators. Studia Mathematica 161 (2) (2004), 163-175.
[12] S. Elaydi. An Introduction to Difference Equations. Undergraduate Texts in Mathematics. Springer. 3rd.

Edition, 2005.
[13] R. Emilion, Mean-Bounded operators and mean ergodic theorems. J. Func. Anal., 61 (1985), 1–14.
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