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Abstract. We provide a geometrical interpretation for the best approximation of the
discrete harmonic oscillator equation formulated in a general Banach space setting. We
give a representation of the solution, and a characterization of maximal regularity-or
well posedness- solely in terms of R-boundedness properties of the resolvent operator
involved in the equation.
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1. Introduction

In numerical integration of a differential equation a standard approach is to replace
it by a suitable difference equation whose solution can be obtained in a stable manner
and without troubles from round off errors. However, often the qualitative properties
of the solutions of the difference equation are quite different from the solutions of the
corresponding differential equations.

For a given differential equation a difference equation approximation is called best if the
solution of the difference equation exactly coincides with solutions of the corresponding
differential equation evaluated at a discrete sequence of points. Best approximations are
not unique (cf. [1, Section 3.6]).

In the recent paper [12] (see also [1]), various discretizations of the harmonic oscillator
equation ÿ + y = 0 are compared. A best approximation is given by

(1.1)
∆2xn

(2 sin(ε/2))2
+ xn+1 = 0,

where ∆ denotes the forward difference operator of the first order, i.e. for each x : Z+ →
X, and n ∈ Z+, ∆xn = xn+1−xn. On the other hand, in the article [17], a characterization
of lp-maximal regularity for a discrete second order equation in Banach spaces was studied,
but without taking into account the best approximation character of the equation.

We study in this paper the discrete second order equation

(1.2) ∆2xn + Axn+1 = fn,
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on complex Banach spaces. Of course, in the finite dimensional setting, equation (1.2)
include systems of linear difference equations, but the most interesting application con-
cerns with partial difference equations. In fact, the homogeneous equation associated to
(1.2) corresponds to the best discretization of the wave equation (cf. [1, Section 3.14]).

We will give a geometrical interpretation to establish that (1.2) is the best possible
discretization between those of the form

∆2xn + Axn+k = fn, k ∈ {0, 1, 2}.
It is remarkable that the step size (2 sin(ε/2))2 from the scalar case (1.1) will be reobtained
in this process. Then, we prove that well posedness, i.e. maximal regularity of equation
(1.2) in lp vector-valued spaces, is characterized on UMD spaces by the R-boundedness
of the set

{(z − 1)2

z
(
(z − 1)2

z
+ A)−1 : |z| = 1, z 6= 1}

The general framework for the proof of our statement uses a new approach based on
operator-valued Fourier multipliers. In the continuous time setting the relation between
operator-valued Fourier multiplier and R−boundedness of their symbols is well docu-
mented. But we emphasize that the discrete counterpart is too incipient and limited
essentially a very few articles (see e.g. [7, 8]). We believe that the development of this
topic could have a strong applied potential. This would lead to very interesting problems
related with difference equations arising in numerical analysis for instance. From this
perspective the results obtained in this work are, to the best of our knowledge, new.

We recall that in the continuous case, it is well known that the study of maximal
regularity is very useful for treating semilinear and quasilinear problems. (see for example
Amann [2], Denk-Hieber and Prüss [19], Clément-Londen-Simonett [15], the survey by
Arendt [5] and the bibliography therein). However it should be noted that for nonlinear
discrete time evolution equations some additional difficulties appear. In fact, we observe
that this approach can not be done by a direct translation of the proofs from the continuous
time setting to the discrete time setting. Indeed, the former only allows to construct a
solution on a (possibly very short) time interval, the global solution being then obtained by
extension results. This technique will obviously fail in the discrete time setting, where no
such thing as an arbitrary short time interval exists. In the recent work [18], the authors
have found a way around the ”short time interval” problem to treat semilinear problems
for certain evolution equations of second order. One more case merits mentioning here is
Volterra difference equations which describe processes whose current state is determined
by their entire prehistory (see, e.g. [11, 30], and the references given there). These
processes are encountered for example in mathematical models in population dynamics as
well as in models of propagation of perturbation in matter with memory. In this direction
one of the authors in [16], considered maximal regularity for Volterra difference equations
with infinite delay.

The paper is organized as follows. The second section provides the definitions and pre-
liminary results to be used in the theorems stated and proved in this work. In particular
to facilitate a comprehensive understanding to the reader we have supplied several basic
R-boundedness properties. In the third section, we will give a geometrical interpreta-
tion to establish that (1.2) is a best discretization. In the fourth section, we treat the
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existence and uniqueness problem for the equation (1.2). In the fifth section, we obtain
a characterization about maximal regularity for equation (1.2). We observe that there
is increasing interest in developing the qualitative theory for such equations. Indeed, it
has been strongly promoted by their natural connectivity with widespread applicability
in several fields of sciences and technology [1, 21].

2. Preliminaries

Let X be a Banach space. Let Z+ denote the set of non negative integer numbers, ∆
the forward difference operator of the first order, i.e. for each x : Z+ → X, and n ∈ Z+,
∆xn = xn+1 − xn. We introduce the means

‖(x1, ..., xn)‖R :=
1

2n

∑

εj∈{−1,1}n

‖
n∑

j=1

εjxj‖

for x1, ..., xn ∈ X.

Definition 2.1. Let X, Y be Banach spaces. A subset T of B(X,Y ) is called R-bounded
if there exists a constant c ≥ 0 such that

(2.1) ‖(T1x1, ..., Tnxn)‖R ≤ c‖(x1, ..., xn)‖R,

for all T1, ..., Tn ∈ T , x1, ..., xn ∈ X, n ∈ N. The least c such that (2.1) is satisfied is called
the R-bound of T and is denoted R(T ).

An equivalent definition using the Rademacher functions can be found in [19]. We note
that R-boundedness clearly implies boundedness. If X = Y , the notion of R-boundedness
is strictly stronger than boundedness unless the underlying space is isomorphic to a Hilbert
space [3, Proposition 1.17]. Some useful criteria for R−boundedness are provided in [3],
[19] and [23]. We remark that the concept of R-boundedness play a fundamental role in
recent works by Clément-Da Prato [13], Clément et al. [14], Weis [33, 34], Arendt-Bu
[3, 4] and Keyantuo-Lizama [26, 27, 28, 29].

Remark 2.2. a) Let S, T ⊂ B(X, Y ) be R-bounded sets, then S + T := {S + T : S ∈
S, T ∈ T } is R- bounded.

b) Let T ⊂ B(X, Y ) and S ⊂ B(Y, Z) be R-bounded sets, then S · T := {S · T : S ∈
S, T ∈ T } ⊂ B(X,Z) is R- bounded and

R(S · T ) ≤ R(S) ·R(T ).

c) Also, each subset M ⊂ B(X) of the form M = {λI : λ ∈ Ω} is R- bounded whenever
Ω ⊂ C is bounded.

A Banach space X is said to be UMD, if the Hilbert transform is bounded on Lp(R, X)
for some (and then all) p ∈ (1,∞). Here the Hilbert transform H of a function f ∈
S(R, X), the Schwartz space of rapidly decreasing X-valued functions, is defined by

Hf :=
1

π
PV (

1

t
) ∗ f.

These spaces are also called HT spaces. It is a well known theorem that the set of
Banach spaces of class HT coincides with the class of UMD spaces. This has been
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shown by Bourgain [9] and Burkholder [10]. The following result on operator-valued
Fourier multipliers on T, due to Blunck [7], is the key for our purposes. Note that for
f ∈ lp(Z; X) the Fourier transform on T is defined as

Ff(z) = f̂(z) =
∑

j∈Z
z−jf(j), z ∈ T.

Theorem 2.3. Let p ∈ (1,∞) and X be a UMD space. Let T := (−π, 0) ∪ (0, π) and
M : T → B(X) be a differentiable function such that the set

{M(t), (eit − 1)(eit + 1)M ′(t) : t ∈ T }

is R-bounded. Then TM ∈ B(lp(Z+; X)) for the following Fourier multiplier TM :

T̂Mf(eit) := M(t)f̂(eit), t ∈ T , f̂ ∈ L∞(T; X) of compact support.

Recall that T ∈ B(X) is called analytic if the set

{n(T − I)T n : n ∈ N},

is bounded. For recent and related results on analytic operators we refer to [20].

3. Spectral Properties and Best Approximation

In this section we first give a geometrical interpretation to establish that (1.2) is the
best discretization between those of the form

(3.1) ∆2xn + Axn+k = fn, x0 = x1 = 0, k ∈ {0, 1, 2}.

In fact, taking (formally) Fourier transform to (3.1) we obtain

(z − 1)2x̂(z) + Azkx̂(z) = f̂(z).

Hence the operator (z − 1)2 + zkA is invertible if and only if
−(z − 1)2

zk
belongs to the

resolvent set ρ(A) of A. Define the function

(3.2) Γα(t) = −(eit − 1)2

eiαt
, α ∈ R, t ∈ (0, 2π).

Then, for each α fixed, Γα(t) describes a curve in the complex plane such that Γα(0) =
Γα(2π) = 0.
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Proposition 3.1. The curve Γα attains the minimum length at α = 1.

Proof. A calculation gives Γ′α(t) = −2ie−i α
2

t((α− 1)(1− cos t) + i sin t). Hence the length
of Γα is given by

l(α) =

∫ 2π

0

|Γ′α(t)|dt = 2

∫ 2π

0

√
(α− 1)2(1− cos t)2 + sin2 t dt.

From which the conclusion follows. ¤

Remark 3.2. As a consequence, the value k = 1 in equation (3.1) is singular in the sense
that the curve described by (3.2) attains the minimum length if and only if α = 1. This
singular character is reinforced by observing the analysis done in the paper [12](cf. also
[1]), where the value

Γ1(ε) = (2 sin ε/2)2,

exactly corresponds to the step size in the best discretization of the harmonic oscillator.
We conjecture that there is a general link between the geometrical properties of curves
related to classes of difference equations and the property of best approximation. This is
possibly a very difficult task, which we do not touch in this paper.

In what follows we denote T := A+I; D(z, r) = {w ∈ C : |w−z| < r} and T = ∂D(0, 1).
The following result relates the values of Γ1(t) with the spectrum of the operator A. It
will be essential in the proof of our characterization of well-posedness for (1.2) in lp-vector
valued spaces given in Section 5 below (cf. Theorem 5.2).

Proposition 3.3. Suppose that T is analytic. Then σ(I−T ) ⊆ D(1, 1)∪{0}. In particular,

−Γ1((0, 2π)) ⊂ ρ(I − T ).
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Proof. Let M > 0 such that
M

n
≥ ||T n(T − I)|| for all n ∈ N. Define p(z) = zn+1 − zn.

By the spectral mapping theorem, we have

||T n(T − I)|| ≥ supλ∈σ(p(T )) |λ| = supλ∈p(σ(T )) |λ|

= supz∈σ(T ) |zn(z − 1)| = supw∈σ(I−T ) |w(1− w)n| ≥ |w||1− w|n,

for all w ∈ σ(I − T ), n ∈ N. Hence

σ(I − T ) ⊆ D(1, 1) ∪ {0}.
Finally, we observe that −Γ1(t) = −[2 sin(t/2)]2 ∈ (−4, 0).

¤

4. Existence and Uniqueness

In this section, we treat the existence and uniqueness problem for the equation

(4.1)

{
∆2xn − (I − T )xn+1 = fn, n ∈ Z+,

x0 = x1 = 0,

Remark 4.1. If z = (zn) is solution of the equation

(4.2)

{
∆2zn − (I − T )zn+1 = 0, n ∈ Z+,
z0 = z1 = 0,

then z ≡ 0. It follows from induction. In fact, suppose that zn = 0 for all n < m, choosing
n = m− 2 in (4.2) we get zm = 0.

Recall that the convolution of two sequences xn and yn is defined by

(x ∗ y)(n) =
n∑

j=0

x(n− j)y(j) =
n∑

j=0

x(n)y(n− j).

Also we note that the convolution theorem for the discrete Fourier transform holds, i.e.
x̂ ∗ y(z) = x̂(z)ŷ(z). Further properties can be found in the book [21, Section 5.1]. Our
main result in this section, on existence and uniqueness of solution for equation (4.1),
read as follows.

Theorem 4.2. Let T ∈ B(X), then there exist a unique solution of equation (4.1) which
is given by xm+1 = (B ∗ f)m, where B(n) ∈ B(X) satisfy the following equation:

(4.3)

{
∆2B(n)− (I − T )B(n + 1) = 0,
B(0) = 0, B(1) = I.

If T is an analytic operator, we have that

(4.4) B(n) =
1

2πi

∮

C

R

(
(z − 1)2

z
, I − T

)
zn−1dz,

where C is a circle, centered at the origin of the z-plane, that enclosed all poles of

R

(
(z − 1)2

z
, I − T

)
zn−1.
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Hence,

(4.5) B̂(z) = R

(
(z − 1)2

z
, I − T

)
.

Proof. Let Vn := [xn, ∆xn], Fn = [0, fn] and RT ∈ B(X ×X) defined by

RT [x, y] = [x + y, x + 2y − T (x + y)].

Then it is not difficult to see that equation (4.1) is equivalent to

(4.6)

{
Vn+1 −RT Vn = Fn, n ∈ Z+,

V0 = [0, 0],

which has the solution

Vm+1 =
m∑

n=0

Rn
T Fm−n.

Denote

RT =

[
I I

I − T 2I − T

]
.

Then a calculation show us that there is an operator B(n) ∈ B(X) with (I − T )B(n) =
B(n)(I − T ) such that

(4.7) Rn
T =

[
∆B(n)−B(n)(I − T ) B(n)

B(n)(I − T ) ∆B(n)

]
.

B(n) satisfy the following equation:

(4.8)

{
B(n + 2) = (3I − T )B(n + 1)−B(n)
B(0) = 0, B(1) = I,

which is equivalent to:

(4.9)

{
∆2B(n)− (I − T )B(n + 1) = 0,
B(0) = 0, B(1) = I.

We can see that there are two sequences ak(2n), bk(2n + 1) in N such that

B(2n) =
n∑

k=1

(−1)n−kak(2n)(3I − T )2k−1, n ≥ 1.

B(2n + 1) =
n∑

k=0

(−1)n−kbk(2n + 1)(3I − T )2k, n ≥ 1.

Since B(2n) = (3I − T )B(2n− 1)−B(2(n− 1)), we have

ak(2n) = bk−1(2n− 1) + ak(2(n− 1)), k = 1, · · · , n− 1.
an(2n) = bn−1(2n− 1) = 1, an−1(2n) = 2n− 2.
a1(2n) = n, b0(2n− 1) = 0, bn−1(2n + 1) = 2n− 1.

On the other hand, using (4.7), we have

(4.10) xm+1 = (B ∗ f)m,
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and

(4.11) ∆xm+1 = (∆B ∗ f)m.

Hence, applying Fourier transform in (4.10) and (4.11), we obtain

(4.12) ∆̂B(z)f̂(z) = (z − 1)B̂(z)f̂(z).

Given x ∈ X we define

f 0
n =

{
x for n = 0,
0 for n 6= 0.

A direct calculation shows that f̂ 0(z) = x, for z ∈ T. Then by (4.12), we get

∆̂B(z)x = (z − 1)B̂(z)x, x ∈ X, z ∈ T.

Hence

(4.13) ∆̂B(z) = (z − 1)B̂(z), z ∈ T.

On the other hand, since Vm+1 = [(B ∗ f)m, (∆B ∗ f)m] is solution of (4.6), we have

(B ∗ f)m = (B ∗ f)m−1 + (∆B ∗ f)m−1,

and hence

(∆B ∗ f)m = (I − T )[(B ∗ f)m−1 + (∆B ∗ f)m−1] + (∆B ∗ f)m−1 + fm

= (I − T )(B ∗ f)m + (∆B ∗ f)m−1 + fm.

Therefore,

(4.14) (∆B ∗ f)m − (∆B ∗ f)m−1 = (I − T )(B ∗ f)m + fm.

Applying Fourier transform in (4.14) and taking into account (4.13), we have

(4.15)

[
(z − 1)2

z
− (I − T )

]
B̂(z) = I.

If T is analytic, we get

(4.16) B̂(z) = R

(
(z − 1)2

z
, I − T

)
,

and the proof is finished.

5. Maximal Regularity

In this section, we obtain a spectral characterization about maximal regularity for
equation (1.2). The following definition is motivated in the paper [7] (see also [17]).

Definition 5.1. Let 1 < p < +∞. We say that equation (1.2) has discrete maximal
regularity if Kf = (I − T )B ∗ f defines a bounded operator K ∈ B(lp(Z+; X)).
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As consequence of the definition, if equation (1.2) has discrete maximal regularity, then
(1.2) has discrete lp-maximal regularity in the following sense: for each (fn) ∈ lp(Z+; X) we
have (∆2xn) ∈ lp(Z+; X), where (xn) is the solution of the equation ∆2xn− (I−T )xn+1 =
fn, for all n ∈ Z+, x0 = 0, x1 = 0. Moreover,

∆2xn =
n∑

k=1

(I − T )B(k)fn−k + fn = ((I − T )B ∗ f)n + fn.

The following is the main result of this paper.

Theorem 5.2. Let X be a UMD space and let T ∈ B(X) analytic. Then the following
assertions are equivalent.

(i) Equation (1.2) has discrete maximal regularity.

(ii)

{
(z − 1)2

z
R

(
(z − 1)2

z
, I − T

)/
|z| = 1, z 6= 1

}
is R-bounded.

Proof. (i) ⇒ (ii) Define kT : Z→ B(X) by

kT (n) =

{
(I − T )B(n) for n ∈ N,
0 otherwise ,

and the corresponding operator KT : lp(Z+; X) → lp(Z+; X) by

(KT f)(n) =
n∑

j=0

kT (j)fn−j = (kT ∗ f)(n), n ∈ Z+.

By hypothesis, KT is well defined and bounded on lp(Z+; X). By Proposition 3.3,
(z − 1)2

z
∈ ρ(I − T ) whenever |z| = 1, z 6= 1. Then, by Theorem 4.2 we have

k̂T (z) = (I − T )B̂(z)

= (I − T )R

(
(z − 1)2

z
, I − T

)

=
(z − 1)2

z
R

(
(z − 1)2

z
, I − T

)
− I, z ∈ T, z 6= 1.

We observe that there exists LM ∈ B(lp(Z+; X)) such that

F(LMf)(z) :=
(z − 1)2

z
R

(
(z − 1)2

z
, I − T

)
f̂(z)

Explicitly, LM is given by (LMf)(n) = (KT f)(n)+f(n). We conclude, from [7] Proposition
1.4, that the set in (ii) is R-bounded.
ii)⇒ (i) Define M(t) = e−it(eit − 1)2R(e−it(eit − 1)2, I − T )− I for t ∈ T . Then M(t) is
R-bounded by hypothesis and Remark 2.6. Define

N(t) = (eit − 1)2R(eit(eit − 1)2, I − T )− eitI,
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then M(t) = e−itN(t) and {N(t)} is R-bounded. A calculation shows that M ′(t) =
−ie−itN(t) + e−itN ′(t). Note that M(t) is R-bounded if and only if N(t) is R-bounded
(cf. Remark 2.6). Moreover,

(eit − 1)N ′(t) = 2ieit[N(t) + eitI]− (2− i + ie−it)[N(t) + eitI]2 − ieit(eit − 1)I

It shows that the set {(eit − 1)M ′(t)}t∈T is R-bounded, thanks to Remark 2.6 again. It
follows the R-boundedness of the set {(eit + 1)(eit − 1)M ′(t)}. Then, by Theorem 2.7 we
obtain that there exists TM ∈ B(lp(Z, X)) such that

F(TMf)(z) =
(z − 12)

z
R

(
(z − 1)2

z
, I − T

)
f̂(z)− f̂(z), z ∈ T, z 6= 1.

By Theorem 4.2, we have

F(Kf)(z) = (I − T )R

(
(z − 1)2

z
, I − T

)
f̂(z) = F(TMf)(z).

Then, by uniqueness of the Fourier transform, we conclude that K ∈ B(lp(Z+, X)).

Remark 5.3. Note that
{

(z − 1)2

z
R

(
(z − 1)2

z
, I − T

)/
|z| = 1, z 6= 1

}

is R-bounded if and only if
{

(z − 1)2R

(
(z − 1)2

z
, I − T

)/
|z| = 1, z 6= 1

}

is R-bounded.

Corollary 5.4. Let H be a Hilbert space and let T ∈ B(H) be an analytic operator. Then
the following assertions are equivalent.

(i) Equation (1.2) has discrete maximal regularity.

(ii) sup
|z|=1,z 6=1

||(z − 1)2

z

(
(z − 1)2

z
− (I − T )

)−1

|| < ∞.

Remark 5.5. Letting H = C and T = ρI with 0 ≤ ρ < 1 we get that the hypothesis of
the preceding corollary are satisfied. We conclude that the scalar equation

∆2xn − (1− ρ)xn+1 = fn, n ∈ Z+, x0 = x1 = 0,

has the property that for all (fn) ∈ lp(Z+) we get (∆2xn) ∈ lp(Z+). In particular xn → 0,
i.e. the solution is stable. Note that using (4.5) we can infer that

B(n) =
1

a− b
(an − bn),
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where a and b are the real roots of z2 + (ρ− 3)z − 1 = 0. Moreover, the solution is given
by

xm+1 = (B ∗ f)m =
m∑

j=0

1

a− b
(a(m−j) − b(m−j))f(j).

Acknowledgments: This work was done while the third author was visiting the Depar-
tamento de Matemática, Universidade Federal de Pernambuco, Recife, Brazil.
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[29] V. Keyantuo, C. Lizama, Hölder continuous solutions for integro-differential equations and maximal
regularity. J. Differential Equations, 230 (2006), 634-660.

[30] V.B. Kolmanovskii, E. Castellanos-Velasco, J.A. Torres-Munoz, A survey: stability and boundedness
of Volterra difference equations, Nonlinear Anal., 53 (7) (2003), 861-928.

[31] P. Portal, Discrete time analytic semigroups and the geometry of Banach spaces, Semigroup Forum,
67 (2003), 125-144.

[32] P. Portal, Maximal regularity of evolution equations on discrete time scales, J. Math. Anal. Appl.,
304 (2005), 1-12.

[33] L. Weis, Operator-valued Fourier multiplier theorems and maximal Lp-regularity, Math. Ann., 319
(2001), 735-758.

[34] L. Weis, A new approach to maximal Lp-regularity, Lecture Notes Pure Appl. Math., 215, Marcel
Dekker, New York, 2001, 195-214.

Universidade Federal de Pernambuco, Departamento de Matemática,
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