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Abstract. We study existence and regularity of bounded mild solutions on the real line to
perturbed integral equations with infinite delay in the space of almost periodic functions (in
the Bohr’s sense), the space of compact almost automorphic functions, the space of almost
automorphic functions and the space of asymptotically almost automorphic functions.

1. Introduction

In this paper, we study the perturbation problem

(1.1) uε(t) =
∫ t

−∞
a(t− s)[Auε(s) + f(s) + εg(s, uε(s))]ds,

for the linear Volterra equation of convolution type,

(1.2) u(t) =
∫ t

−∞
a(t− s)[Au(s) + f(s)]ds,

where ε ≥ 0 is a parameter. Here u(t) denotes the state of the system at time t, A a closed
linear operator in the state space, a Banach space X, with domain D(A), the real kernel a
belongs to L1(R), and f, g are given functions.

In the case of finite dimensional spaces, sufficient conditions under which stability of the
linear equation implies the corresponding stability of the nonlinear equation has been studied
for many authors (see e.g. [15, 16, 26] and references therein). In particular, in [26] conditions
are obtained under which the perturbed equation has asymptotically periodic solutions. Per-
turbation results on integrodifferential equations can be found in [15]. For a careful overview
of perturbations of Volterra equations, see [19].

Equation (1.2), and their nonlinear counterpart (1.1), arises in the problem of heat flow
with memory (cf. [31]), and have been the object of intensive study during the past years
(see e.g. [7, 16, 32, 33] and references therein). Observe that it can be viewed as the limiting
equation for the Volterra equation

(1.3) u(t) =
∫ t

0
a(t− s)[Au(s) + f(s)]ds, t ≥ 0,

see [32, Chapter III, Section 11.5] to obtain details on this assertion. Moreover, under the
additional assumption that a is bounded and the first moment of a exists, it was proved in
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[7] that problem (1.2) is equivalent to

(1.4) u(t) +
d

dt
(αu(t) +

∫ t

−∞
k(t− s)u(s)ds) = (

∫ ∞

0
a(τ)dτ)(Au(t) + f(t)), t ∈ R,

for some α > 0 and k ∈ L1(R+) nonnegative and nonincreasing. This linear integrodif-
ferential equation was studied in [8] obtaining existence and regularity of solutions when
A generates a contraction semigroup on X. Under the stronger assumption that A gen-
erates an analytic semigroup, it was studied in [7] where regularity of solutions in spaces
Lp(X), BUC(X),Wα,p(X), and the space of α-Hölder continuous and bounded functions
BCα(X), for 0 < α < 1 and 1 ≤ p < ∞, was established. These maximal regularity results
were then applied to study existence and regularity of solutions for (1.1) in case of several
nonlinearities g(t, u(t)).

We take an operator theoretical approach to solve our problem, by first defining a natural
concept of ”resolvent family” associated to the abstract linear equation (1.2). Then, under
the assumption that A is the generator of a strongly continuous integral resolvent family (see
below for the definition) and under some regularity conditions on the functions f and g, we
will show that the nonlinear problem (1.1) has a unique mild solution uε on some classes of
closed subspaces of BC(X), for each ε > 0 subject to certain restriction. Moreover, we will
prove that uε converges uniformly to u as ε → 0, the unique mild solution of equation (1.2).

2. Preliminaries

We introduce some notations. We denote by BC(X) the space consisting of continuous
and bounded functions f : R→ X endowed with the norm of uniform convergence

||f ||∞ := sup
t∈R

||f(t)||.

We set AP (X), AA(X), AAc(X) and AAA(X) for the closed subspaces formed by the al-
most periodic functions, the almost automorphic functions, the compact almost automorphic
functions, and the asymptotically almost periodic functions respectively.

Almost automorphic functions were first introduced in the literature by S. Bochner [5] as a
natural generalization of the classical concept of almost periodic function. In 1980s, G.M. N’
Guérékata [30] defined asymptotically almost automorphic functions as perturbations of al-
most automorphic functions by functions vanishing at infinity. Compact almost automorphic
functions were introduced by A.M. Fink [12]. All this concepts, as well as their application
to the field of evolution equations in Banach spaces, has been intensively studied in recent
years (see [1, 3, 4, 6, 10, 11, 13, 14, 17, 18, 21, 27, 28, 29] and [35]).

It is well known that

AP (X) ⊂ AAc(X) ⊂ AA(X) ⊂ AAA(X) ⊂ BC(X).

We recall that the Laplace transform of a function f ∈ L1
loc(R+, X) is given by

L(f)(λ) := f̂(λ) :=
∫ ∞

0
e−λtf(t)dt, Reλ > ω,

where the integral is absolutely convergent for Reλ > ω. Furthermore, we denote by B(X) the
space of bounded linear operators from X into X endowed with the norm of operators, and the
notation ρ(A) stands for the resolvent set of A. In order to establish an operator theoretical
approach to the equations studied in this paper, we consider the following definition (cf. [25]).
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Definition 2.1. Let A be a closed linear operator with domain D(A) ⊆ X. We say that A is
the generator of an integral resolvent if there exists ω ≥ 0 and a strongly continuous function
S : R+ → B(X) such that {1/â(λ) : Reλ > ω} ⊆ ρ(A) and

(
1

â(λ)
I −A)−1x =

∫ ∞

0
e−λtS(t)xdt, Reλ > ω, x ∈ X.

In this case, S(t) is called the integral resolvent family generated by A.

The concept of integral resolvent, as defined above, is closely related with the concept of
resolvent family (see Prüss [32, Chapter I]). A closed but weaker definition was formulated
by Prüss [32, Definition 1.6]. The book of Gripenberg, Londen and Staffans [16] contains an
overview of the theory for the scalar case.

Because of the uniqueness of the Laplace transform, an integral resolvent family with
a(t) ≡ 1 is the same as a C0-semigroup whereas that an integral resolvent family with
a(t) = t corresponds to the concept of sine family, see [2, Section 3.15]. However, concerning
the equations (1.1)-(1.2) of this paper, the typical kernel will be a(t) = tαe−ωt, where ω > 0
and α ≥ 0.

We note that integral resolvent families are a particular case of (a, k)-regularized families
introduced in [22]. These are studied in a series of several papers in recent years (see [23, 24,
34]). According to [22] an integral resolvent family S(t) corresponds to a (a, a)-regularized
family.

In a similar way as occurs for C0-semigroups, we can establish several relations between
the integral resolvent family and its generator. The following result is a direct consequence
of [22, Proposition 3.1 and Lemma 2.2].

Proposition 2.2. Let S(t) be the integral resolvent family on X with generator A. Then the
following properties hold:

(a) S(t)D(A) ⊆ D(A) and AS(t)x = S(t)Ax for all x ∈ D(A) and t ≥ 0.
(b) Let x ∈ D(A) and t ≥ 0. Then

(2.5) S(t)x = a(t)x +
∫ t

0
a(t− s)AS(s)xds.

(c) Let x ∈ X and t ≥ 0. Then
∫ t
0 a(t− s)S(s)xds ∈ D(A) and

S(t)x = a(t)x + A

∫ t

0
a(t− s)S(s)xds.

In particular, S(0) = a(0)I.

If an operator A with domain D(A) is the infinitesimal generator of an integral resolvent
family S(t) and a(t) is a continuous, positive and nondecreasing function which satisfies

lim sup
t→0+

||S(t)||
a(t)

< ∞, then for all x ∈ D(A) we have

Ax = lim
t→0+

S(t)x− a(t)x
(a ∗ a)(t)

.

For instance, the case a(t) ≡ 1 corresponds to the generator of a C0-semigroup and a(t) = t
actually corresponds to the generator of a sine family. We refer the reader to [24, Theorem
2.1] for these properties. Furthermore, a characterization of generators of integral resolvent
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families, analogous to the Hille-Yosida Theorem for C0 semigroups, can be directly deduced
from [22, Theorem 3.4]. Results on perturbation, approximation, representation as well as
ergodic type theorems can be also deduced from the more general context of (a, k) regularized
resolvents (see [23, 24] and [34]).

3. Bounded mild solutions

Consider the following two equations

u(t) =
∫ t

−∞
a(t− s){Au(s) + f(s)} ds(3.6)

u(t) =
∫ t

−∞
a(t− s){Au(s) + f(s) + g(s, u(s))} ds,(3.7)

Assume that A is the generator of an integral resolvent family S(t) which is integrable,
that is

(3.8) ||S|| :=
∫ ∞

0
||S(τ)||dτ < ∞.

Given f ∈ BC(X), let ϕ∗(t) be the function given by

(3.9) ϕ∗(t) =
∫ t

−∞
S(t− s)f(s)ds, t ∈ R.

Then, we have
||ϕ∗||∞ ≤ ||S||||f ||∞.

Suppose that f(t) ∈ D(A), it then follows that ϕ∗(t) ∈ D(A) for all t ∈ R (see e.g. [32,
Proposition 1.2]). Using (2.5) and Fubini’s theorem, we obtain

∫ t

−∞
a(t− s)Aϕ∗(s)ds =

∫ t

−∞
a(t− s)A

∫ s

−∞
S(s− τ)f(τ)dτds

=
∫ t

−∞

∫ s

−∞
a(t− s)AS(s− τ)f(τ)dτds

=
∫ t

−∞

∫ t

τ
a(t− s)AS(s− τ)f(τ)dsdτ

=
∫ t

−∞

∫ t−τ

0
a(t− τ − p)AS(p)dpf(τ)dτ

=
∫ t

−∞
(S(t− τ)f(τ)− a(t− τ)f(τ))dτ

= ϕ∗(t)−
∫ t

−∞
a(t− τ)f(τ)dτ

which establishes that ϕ∗(·) is (strict) solution of equation (3.6). In general, we have only
f(t) ∈ X and hence, in what follows, we will say that ϕ∗(t) defined by (3.9) is a mild solution
of equation (3.6).
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Definition 3.3. Let A be the generator of an integral resolvent family {S(t)}t≥0. A continuous
function u : R→ X satisfying the integral equation

(3.10) u(t) =
∫ t

−∞
S(t− s)[f(s) + g(s, u(s))]ds, ∀t ∈ R,

is called a mild solution on R to the equation (3.7).

We will prove the existence of a bounded mild solution for equations of the form

(3.11) uε(t) =
∫ t

−∞
a(t− s){Auε(s) + f(s) + εg(s, uε(s))}ds,

where ε is a parameter and the function g(t, x) satisfy certain conditions which will be specified
further.

Let us state the principal result of this section:

Theorem 3.4. Assume that A generates an integral resolvent family {S(t)}t≥0 satisfying
assumption (3.8). If f is a bounded continuous function, g satisfies the Lipschitz condition

‖g(t, x1)− g(t, x2)‖ ≤ L‖x1 − x2‖
for all t ∈ R, x1, x2 ∈ X, where ∫

R
‖g(t, 0)‖ dt =: M < ∞.

Then for all 0 < ε < 1
L||S|| there exists a mild solution ϕε ∈ BC(X) of (3.11)ε such that

ϕε → ϕ∗ uniformly as ε → 0, where ϕ∗ is the mild bounded solution of (3.6).

Proof. Let 0 < ε < 1
L||S|| be fixed. On BC(X) we define an operator Fε by

(3.12) (Fεϕ)(t) = ε

∫ t

−∞
S(t− s)g(s, ϕ(s)) ds, ϕ ∈ BC(X).

We note that F is well-defined. In fact:

‖Fεϕ(t)‖ ≤ ε

∫ t

−∞
‖S(t− s)‖[‖(g(s, ϕ(s))− g(s, 0))‖+ ‖g(s, 0)‖] ds

≤ ε||S||
{

sup
t∈R

‖ϕ(t)‖L +
∫ t

−∞
‖g(s, 0)‖ ds

}

and hence,

(3.13) ‖Fεϕ‖∞ = sup
t∈R

‖Fεϕ(t)‖ ≤ ε||S||{‖ϕ‖∞L + M}.

We now prove that Fε is a contraction:

‖Fεϕ1 − Fεϕ2‖∞ = sup
t∈R

‖Fεϕ1(t)− Fεϕ2(t)‖ ≤ εL||S||‖ϕ1 − ϕ2‖∞ < ‖ϕ1 − ϕ2‖∞.

Now, for each ϕ ∈ BC(X), we define

(3.14) Gεϕ(t) :=
∫ t

−∞
S(t− s)f(s)ds + Fεϕ(t).
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Since f ∈ BC(X) we have Gεϕ ∈ BC(X). Moreover Gε is a contraction. Hence, by the
Banach fixed point theorem, we conclude that there exists a unique bounded mild solution
ϕε of (3.11)ε.

Let ϕ∗ be the bounded mild solution of (3.6), that is ϕ∗(t) =
∫ t

−∞
S(t− s)f(s)ds. We now

have from (3.14) and (3.13),

||ϕε − ϕ∗||∞ = ||Fεϕ|| ≤ ε||S||{‖ϕ‖∞L + M},
and hence ||ϕε − ϕ∗||∞ → 0 as ε → 0. This completes the proof.

¤

Remark 3.5. We observe that in the scalar case, i.e. X = Cn, necessary and sufficient
conditions for the integrability of S(t) are known. See Example 4.9 below. In the case that
X is a Hilbert or Banach space, the problem of integrability of resolvents has been studied
by J. Prüss in [32, Chapter III].

4. mild solutions on subspaces of BC(X)

Recall that we denote by AP (X) the Banach space (with the sup-norm) of all almost
periodic functions (in the Bohr’s sense). Similarly, AAc(X) is the space of compact almost
automorphic functions, AA(X) is the space of almost automorphic functions, and AAA(X)
is the space of asymptotically almost automorphic functions.

The following is our main result on regularity under convolution of the above mentioned
spaces. It corresponds to a summary, and in some cases a slight extension and improvement,
of recent results given by a number of authors (cf. [1, 10, 17, 27, 28] and [29]).

Theorem 4.6. Let {S(t)}t≥0 ⊂ B(X) be a strongly continuous family of bounded linear opera-
tors that satisfies assumption (3.8). If f belongs to one of the spaces AP (X), AAc(X), AA(X)
or AAA(X), and w(t) is given by

w(t) =
∫ t

−∞
S(t− s)f(s) ds

then w belongs to the same space as f .

Proof. We first consider almost periodic functions. Almost periodicity of f means that for
each ε > 0 there exists a T > 0 such that every subinterval of R of length T contains at least
one point h such that sup

t∈R
||f(t + h)− f(t)|| ≤ ε. Now

sup
t∈R

||w(t + h)− w(t)|| = sup
t∈R

||
∫ t

−∞
S(t− s)[f(s + h)− f(s)]ds||

≤ ||S|| sup
t∈R

||f(t + h)− f(t)|| ≤ ε||S||,

and therefore, w has the same property as f , i.e., it is almost periodic.
The compact almost automorphic case: Let (σn)n∈N be a sequence of real numbers. f ∈

AAc(X) means, by definition, that there exist a subsequence (sn)n∈N, and a continuous
function v ∈ BC(X) such that f(t + sn) converges to v(t) and v(t − sn) converges to f(t)
uniformly on compact subsets of R.
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Since

(4.15) w(t + sn) =
∫ t+sn

−∞
S(t + sn − s)f(s)ds =

∫ t

−∞
S(t− s)f(s + sn)ds,

using the Lebesgue’s dominated convergence theorem, we obtain that w(t + sn) converges to

z(t) =
∫ t

−∞
S(t− s)v(s)ds as n →∞ for each t ∈ R.

Furthermore, the preceding convergence is uniform on compact subsets of R. To show this
assertion, we take a compact set K = [−a, a]. For ε > 0, we choose Lε > 0 and Nε ∈ N such
that ∫ ∞

Lε

||S(s)||ds ≤ ε,

‖f(s + sn)− v(s)‖ ≤ ε, n ≥ Nε, s ∈ [−L, L],

where L = Lε + a. For t ∈ K, we now can estimate

‖w(t + sn)− z(t)‖ ≤
∫ t

−∞
||S(t− s)||‖f(s + sn)− v(s)‖ds

≤
∫ −L

−∞
||S(t− s)||‖f(s + sn)− v(s)‖ds

+
∫ t

−L
||S(t− s)||‖f(s + sn)− v(s)‖ds

≤ 2‖f‖∞
∫ ∞

t+L
||S(s)||ds + ε

∫ ∞

0
||S(s)||ds

≤ ε (2‖f‖∞ + ||S||) ,

which proves that the convergence is independent of t ∈ K. Repeating this argument, one
can show that z(t − sn) converges to w(t) as n → ∞ uniformly for t in compact subsets of
R. This completes the proof in case of the space AAc(X).

We now consider the space of almost automorphic functions. Let (s′n) ⊂ R be an arbitrary
sequence. Since f ∈ AA(X) there exists a subsequence (sn) of (s′n) such that

lim
n→∞ f(t + sn) = v(t), for all t ∈ R

and
lim

n→∞ v(t− sn) = f(t), for all t ∈ R.

From (4.15), note that
‖w(t + sn)‖ ≤ ||S||‖f‖∞

and by continuity of S(·)x we have S(t − σ)f(σ + sn) → S(t − σ)g(σ), as n → ∞ for each
σ ∈ R fixed and any t ≥ σ. Then by the Lebesgue’s dominated convergence theorem, we

obtain that w(t + sn) converges to z(t) =
∫ t

−∞
S(t − s)v(s)ds as n → ∞ for each t ∈ R. In

similar way we can show that

z(t− sn) → w(t) as n →∞, for all t ∈ R,

and the proof of this case is complete.
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Finally we consider the case of asymptotically almost automorphic functions. Let f ∈
AAA(R+, X) be given. Then f = g |R+ +h; with g ∈ AA(R, X) and ||h(t)|| → 0 as t →∞.

We write w(t) as

w(t) =
∫ t

−∞
S(t− s)g(s) ds +

∫ t

−∞
S(t− s)h(s) ds,

and define

w1(t) :=
∫ t

−∞
S(t− s)g(s) ds, w2(t) :=

∫ t

−∞
S(t− s)h(s) ds.

Since g ∈ AA(R, X), we known that w1 ∈ AA(X). Let ε > 0, then there exist T > 0 such
that ‖h(s)‖ < ε for all s > T and hence we can write

w2(t) =
∫ T

−∞
S(t− s)h(s) ds +

∫ t

T
S(t− s)h(s) ds.

Then

‖w2(t)‖ ≤
∫ T

−∞
‖S(t− s)‖‖h(s)‖ ds +

∫ t

T
‖S(t− s)‖ε ds

≤ ‖h‖∞
∫ ∞

t−T
||S(v)||dv + ||S||ε.

Hence ||w2(t)|| → 0 as t →∞. This completes the proof of the Theorem.
¤

In what follows, we let M(R×X;X) stand for the space of functions f : R×X → X such
that f(·, x) ∈ M(X) uniformly for each x ∈ K, where K is any bounded subset of X. The
following is the main result of this section.

Theorem 4.7. Assume that A generates an integral resolvent family {S(t)}t≥0 satisfying
assumption (3.8). Let M be the space of almost periodic, compact almost automorphic or
almost automorphic functions. If f ∈ M(X), g ∈ M(R ×X;X) and satisfies the Lipschitz
condition

‖g(t, x1)− g(t, x2)‖ ≤ L‖x1 − x2‖
for all t ∈ R, x1, x2 ∈ X, where

∫

R
‖g(t, 0)‖ dt =: M < ∞.

Then ϕ∗ ∈M(X) and for all 0 < ε < 1
L||S|| there exists a mild solution ϕε ∈M(X) of (3.11)ε

such that ϕε → ϕ∗ uniformly as ε → 0.

Proof. On M(X) we define the functions Fε and Gε as in (3.12) and (3.14) respectively. Since

f ∈ M(X) we have by Theorem 4.6 that
∫ t

−∞
S(t− s)f(s)ds ∈ M(X). By the composition

rule (cf. [28, Theorem 1.69] for almost periodic functions, [20, Lemma 2.2] in case of AA(X)
and [10, Lemma 2.1] in case of AAc(X)), we have Gεϕ ∈ M(X) for all ϕ ∈ M(X). We
conclude that M(X) is invariant under Fε and the proof then follows as in Theorem 3.4.

¤



BOUNDED MILD SOLUTIONS 9

Finally, we will consider asymptotically almost periodic functions. This case have a slight
different assumption as the previous one, due essentially to the rule of composition (cf. [20,
Theorem 2.3]).

We denote C0(R × X, X) the set of all bounded continuous functions f : R × X → X
such that limt→∞ ||f(t, x)|| = 0 uniformly on any bounded subset of X. We recall that
g ∈ AAA(R×X; X) if and only if g = h+ϕ where h ∈ AA(R×X; X) and ϕ ∈ C0(R×X, X).

Theorem 4.8. Assume that A generates an integral resolvent family {S(t)}t≥0 satisfying
assumption (3.8). If f ∈ AAA(X), g = h+ϕ ∈ AAA(R×X;X) and h satisfies the Lipschitz
condition

‖h(t, x1)− h(t, x2)‖ ≤ L‖x1 − x2‖
for all t ∈ R, x1, x2 ∈ X, where

∫

R
‖h(t, 0)‖ dt =: M < ∞.

Then the same conclusion of Theorem 4.7 holds.

Example 4.9. Let M be the space of almost periodic, compact almost automorphic or almost
automorphic functions. Let b ∈ L1(R) be bounded, and h ∈ M(X) satisfying a Lipchitz
condition:

||h(x)− h(y)|| < L||x− y||, x, y ∈ X.

Using the preceding theorem, with g(t, x) = b(t)h(x), we can assert that for all f ∈ M(X),
the equation

(4.16) uε(t) =
∫ t

−∞
a(t− s){Auε(s) + f(s) + εb(s)h(uε(s))}ds,

where a ∈ L1(R+) and A is the generator of an integral resolvent family satisfying assumption
(3.8), has a unique mild solution in M(X), for sufficiently small ε > 0.

In particular, if we set A ≡ 0, we have that the integral resolvent family is given by
S(t)x = a(t)x and therefore, the equation

(4.17) uε(t) =
∫ t

−∞
a(t− s){f(s) + εb(s)h(uε(s))}ds,

has unique mild solution in M(X), for sufficiently small ε > 0, whenever f ∈M(X).

We now consider some examples in the scalar case:

We set X = Cn, A = ρI, ρ ∈ C, and a ∈ L1(R+). Suppose that

(4.18) ρâ(λ) 6= 1 for all Reλ ≥ 0,

where the hat ·̂ denotes the Laplace transform of a(t). By the half-line Paley- Wiener Theorem
(see [16, p.45]) we get that A generates an integral resolvent Sρ ∈ L1(R+,Cn×n), so that
assumption (3.8) is satisfied. We conclude that for all

(4.19) 0 < ε <
1

L||Sρ||
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the equation

(4.20) uε(t) =
∫ t

−∞
a(t− s){ρuε(s) + f(s) + εb(s)h(uε(s))}ds,

have a unique mild solution that belong to M(X) whenever f ∈M(X).

As a concrete example, we can take a(t) = tαe−ωt, ω > 0, α ≥ 0. Note that in case α = 0
we have

S0(t) = e(ω+ρ)t, t ≥ 0

and, in case α = 1, we have for ρ > 0 :

S1(t) =
1√
ρ
eωt sinh(

√
ρt), t ≥ 0.

In the particular case α = 0, we observe that the condition (4.18) is equivalent to say

Re(ρ) < −ω,

and hence, clearly S0 ∈ L1(R+,Cn×n). More precisely, we have ||S0|| = −1
ω+Re(ρ) . Using (4.19)

we conclude that for all ρ such that Re(ρ) < 0, and any ε > 0, there exists a unique mild
solution of the equation

(4.21) uε(t) =
∫ t

−∞
a(t− s){ρuε(s) + f(s) + εb(s)h(uε(s))}ds,

Moreover, this solution belongs to M(X) for every f ∈M(X).
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