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Abstract. We characterize the well-posedness for second order discrete evolution equa-
tions in UMD spaces by means of Fourier multipliers and R-boundedness properties of
the resolvent operator which defines the equation. Applications to semilinear problems
are given.

1. Introduction

Let X be a Banach space and let A be a bounded linear operator. Our main objective
of this paper is to characterize the well-posedness in weighted spaces lrp(Z+; X) := {(xn) :
(r−nxn) ∈ lp(Z+;X)} (r > 0) for the following discrete second order evolution equation:

(1.1) ∆2un + Aun = fn, n ∈ Z+,

with zero initial conditions and f ∈ lrp(Z+; X).
Beside its theoretical interest, the study of abstract discrete evolution equation together

with well-posedness has great importance and there is much interest in developing the
qualitative theory for such equations. Indeed, this has been strongly motivated by their
natural and widespread applicability in several fields of sciences and technology, see e.g.
[1, 25, 35].

For example S. Blunck considered, in [12, 13], maximal regularity of first order evolution
equations on discrete time; see also Portal [37, 38], where he discussed discrete analytic
semigroup and maximal regularity on discrete time scales, respectively. In [29], maxi-
mal regularity on discrete Hölder spaces for finite difference operators subject to Dirichlet
boundary conditions in one and two dimensions is proved. Furthermore, the authors in-
vestigated maximal regularity in discrete Hölder spaces for the Crank- Nicolson scheme.
In [7], well-posedness of difference schemes for abstract elliptic problems in Lp spaces was
studied. In [26], maximal regularity for linear parabolic difference equations is treated
while in [21, 22] the authors has made a perturbation theory for semilinear evolution
equations on discrete time for first and second order using discrete maximal regularity;
see also the recent paper by Kalton and Portal [30], where they discussed maximal regular-
ity of power-bounded operators and relate the discrete to the continuous time problem for
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analytic semigroups. Recently, discrete maximal regularity for functional difference equa-
tions with infinite delay was considered in [20]. There, applications to Volterra difference
equations with infinite delay are also shown.

A motivation for our studies in this paper stems in the recent article by Arendt and Bu
[4] and Cuevas and Lizama [19]. In the first one the authors consider the operator-valued
Marcinkiewich multiplier theorem and maximal regularity, and the second one the authors
shown a characterization for the maximal regularity for a second order difference equation
by R-boundedness properties of the resolvent operator which defines the equation.

We remark that the concept of R-boundedness was implicity introduced by Bourgain in
[14] and later on also by Zimmermann [41]. Explicitly it is due to Berkson and Gillespie
[11] and Clément et al. [17]. It plays a fundamental role in recent works by Clément-Da
Prato [16], Weis [39, 40], Arendt-Bu [4, 5], Keyantuo-Lizama [31, 32, 33] and Ashyralyev
et al. [7, 8].

One of the most important tools to prove well-posedness are Fourier multiplier theorems.
They plays a key role in the analysis of elliptic and parabolic problems. In recent years it
has become apparent that one need not only the classical theorems but also vector-valued
extensions with operator-valued multiplier functions or symbols. In particular, in [19] the
authors used a vector-valued Fourier multiplier theorem due to Blunck (see [12], Theorem
1.3), to study maximal regularity of second order difference equations. These approach
will be also our method in this paper.

For an overview of the organization of the work. The second section provides the
definitions and preliminary results to be used. In particular to facilitate a comprehensive
understanding to the reader we have supplied several basic R-boundedness properties
which are a natural tool in our setting. We also introduce the concept of lp−multiplier by
using Z-transform. In the third section, we show how R-boundedness and lp−multipliers
can be used to obtain a characterization about well-posedness for equation (1.1) in UMD
Banach spaces (see Theorem 3.4). By using our characterization and the Implicit Function
Theorem, we obtain as an application the existence of solutions to the discrete semilinear
evolution equation

(1.2) ∆2
rx− r2(I − T )x = G(x) + ρf,

where G is a Frechét differentiable function satisfying suitable assumptions and ρ > 0 is a
small parameter (see Theorem 3.7 and Corollary 3.8).

2. Preliminaries

Let X be a Banach space. Let Z+ denote the set of positive integer numbers, the ∆r

denotes the r−difference operator of the first order, i.e. for each x : Z+ → X, and n ∈ Z+,
∆rxn = xn+1 − rxn, r ∈ R+. In case r = 1 we denote ∆ ≡ ∆1. Moreover, we denote
∆2

rxn = ∆r(∆rxn). If we set (τrx)(n) := r−nx(n), then is easy to check that the following
identity holds:

(2.1) ∆2
r = r2 τr−1 ◦∆2 ◦ τr.

It shows that well-posedness of equation (1.1) in the weighted spaces lrp(Z+; X) is equiv-
alent to the study of the discrete time evolution equation

(2.2) ∆2
rxn − r2(I − T )xn = fn, for all n ∈ Z+, x0 = 0, x1 = 0.
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in the usual spaces lp(Z+; X), where T := I −A ∈ B(X) and f : Z+ → X.
Denote C(0) = I, the identity operator on X, and define

(2.3) C(n) =
[n/2]∑

k=0

(
n
2k

)
(I − T )k, for n = 1, 2, ...

We define also S(0) = 0,

(2.4) S(n) =
[(n−1)/2]∑

k=0

(
n

2k + 1

)
(I − T )k,

for n = 1, 2, ... The sequences of linear and bounded operators C(n) and S(n) were intro-
duced in [19] to represent the solution of (2.2) in the border case r = 1. The following
result generalize [19, Proposition 2.2].

Proposition 2.1. Let T ∈ B(X) be given, then the (unique) solution of equation (2.2) is
given by

(2.5) xm+1 = (r•−1S ∗ f)m.

Moreover,

(2.6) ∆rxm+1 = (r•C ∗ f)m.

Proof. Let xn be the solution of equation (2.2) and define vn := [xn,∆rxn], Fn := [0, fn]
and the operator RT,r ∈ B(X ×X) by

RT,r[x, y] = [rx + y, r2(x− Tx) + ry].

Then, we can infer that the equation (2.2) is equivalent to:

(2.7) vn+1 −RT,rvn = Fn, v0 = [0, 0],

which has the solution

(2.8) vm+1 =
m∑

n=0

Rn
T,rFm−n.

Denote

RT,r =
[

rI I
r2(I − T ) rI

]
.

Then a calculation shows us that

Rn
T,r = rn




C(n) 1
rS(n)

r(I − T )S(n) C(n)


 .

The result is now a consequence of formula (2.8). The uniqueness follows from induction
and then the proof is finished.
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Definition 2.2. Let 1 < p < +∞. One says that equation (2.2) has discrete maximal
regularity if Krf := (I−T )r•+1S ∗f defines a linear bounded operator Kr ∈ B(lp(Z+, X)).

Note that, in particular, the definition implies that for all (fn) ∈ lp(Z+, X) we have
(∆2

rxn) ∈ lp(Z+, X) in equation (2.2). This is the main property that allows the use of
maximal regularity in the treatment of non-linear problems.

We introduce the means

‖(x1, ..., xn)‖R :=
1
2n

∑

εj∈{−1,1}n

‖
n∑

j=1

εjxj‖,

for x1, ..., xn ∈ X.
Let X and Y be Banach spaces, B(X,Y ) be the space of bounded linear operators from

X to Y .

Definition 2.3. A subset T of B(X, Y ) is called R-bounded if there exists a constant c ≥ 0
such that

(2.9) ‖(T1x1, ..., Tnxn)‖R ≤ c‖(x1, ..., xn)‖R,

for all T1, ..., Tn ∈ T , x1, ..., xn ∈ X, n ∈ N. The least c such that (2.9) is satisfied is
called the R-bound of T and is denoted R(T ).

The notion of R−boundedness has proved to be a significant tool in the study of abstract
multiplier operators. An equivalent definition using the Rademacher functions can be
found in [23]. We note that R-boundedness clearly implies boundedness. If X = Y ,
the notion of R-boundedness is strictly stronger than boundedness unless the underlying
space is isomorphic to a Hilbert space, see [4, Proposition 1.17]. Some useful criteria for
R−boundedness are provided in [4, 23] and [28].

Remark 2.4. a) Any finite family T ⊂ B(X,Y ) is R-bounded.
b) If T ⊂ B(X, Y ) is R-bounded then it is uniformly bounded, with sup{||T || : T ∈

T } ≤ Rp(T ).
c) The definition of R-boundedness is independent of p ∈ [1,∞).
d) When X and Y are Hilbert spaces, T ⊂ B(X, Y ) is R-bounded if and only if T is

uniformly bounded.
e) Let S, T ⊂ B(X,Y ) be R-bounded sets, then S ± T := {S ± T : S ∈ S, T ∈ T } are

R- bounded.
f) Let T ⊂ B(X,Y ) and S ⊂ B(Y, Z) be R-bounded sets, then S · T := {S · T : S ∈

S, T ∈ T } ⊂ B(X,Z) is R-bounded and R(S · T ) ≤ R(S) ·R(T ).
g) Also, each subset M ⊂ B(X) of the form M = {λI : λ ∈ Ω} is R- bounded, whenever

Ω ⊂ C is bounded (see Example 3.2 in [12]).

Definition 2.5. A Banach space X is said to have the unconditional martingale difference
property (UMD) if for each p ∈ (1,∞) there is a constant Cp > 0 such that for any
martingale (fn)n≥0 ⊂ Lp(Ω, Σ, µ; X) and any choice of signs (ξn)n≥0 ⊂ {−1, 1} and any
N ∈ Z+ the following estimate holds

||f0 +
N∑

n=1

ξn(fn − fn−1)||Lp(Ω,Σ,µ;X) ≤ Cp||fN ||Lp(Ω,Σ,µ;X).
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Remark 2.6. A Banach space X is said to be HT , if the Hilbert transform is bounded on
Lp(R, X) for some (and then all) p ∈ (1,∞). Here, the Hilbert transform H of a function
f ∈ S(R, X), the Schwartz space of rapidly decreasing X-valued functions, is defined by

Hf :=
1
π

PV (
1
t
) ∗ f.

It is a well known theorem that the set of Banach spaces of class HT coincides with
the class of UMD spaces. This has been shown by Bourgain [14] and Burkholder [15].
For more information and details on the Hilbert transform and the UMD Banach spaces
we refer to Amann’s book [3, Section III.4.3-III.4.5]. The UMD spaces include Hilbert
spaces, Sobolev spaces W s

p (Ω), 1 < p < ∞ (see [4]), Lebesgue spaces Lp(Ω, µ), Lp(Ω, µ;X),
1 < p < ∞, where X is a UMD space and the Schatten-von Neumann classes Cp(H), 1 <
p < ∞, of operators on Hilbert spaces. On the other hand, we can observe that:
a) Every closed subspace of a UMD space is a UMD space.
b) Every UMD space is reflexive.
c) A Banach space X is UMD if and only if its dual X∗ is UMD.

We recall now the following operator-valued multiplier theorem on T := {z ∈ C : |z| =
1} due to Blunck, see [12, Theorem 1.3].

Theorem 2.7. Let p ∈ (1,∞) and X be a UMD space. Let M : (−π, π) \ {0} → B(X)
be a differentiable function such that the set

{M(t), (eit − 1)(eit + 1)M ′(t) : t ∈ (−π, π) \ {0}}
is R-bounded. Then there is an operator TM ∈ B(lp(Z; X)) such that

F(TMf)(eit) = M(t)Ff(eit), t ∈ (−π, π) \ {0}, Ff ∈ L∞(T; X)

of compact support.

Definition 2.8. An operator S ∈ B(X) is called analytic if the set {n(S − I)Sn : n ∈ N}
is bounded.

This notion is a discrete analogue of the property “{tA exp (tA) : t > 0} is bounded”,
which characterizes the analyticity of the bounded semigroup (exp (tA))t≥0. For recent
and related results on analytic operators we refer the reader to [24]. In what follows, we
denote D(z, a) = {w ∈ C : |w − z| < a}.
Proposition 2.9. Let T ∈ B(X) be an analytic operator. Then σ(r2(I−T )) ⊆ D(r2, r2)∪
{0}. In particular (z − r)2 ∈ ρ(r2(I − T )) whenever |z| = αr, α = 1 +

√
2, z 6= αr.

Proof. Let z /∈ D(r2, r2)∪{0}, then z
r2 /∈ D(1, 1)∪{0}. By Lemma 2.10 Ref. [19], we get

z
r2 ∈ ρ(I−T ), that is, z ∈ ρ(r2(I−T )). Hence σ(r2(I−T )) ⊆ D(r2, r2)∪{0}. For the last
assertion, we note that |(z−r)2−r2| = |z||z−2r| ≥ α(α−2)r2 = (

√
2+1)(

√
2−1)r2 = r2.

For the rest of the article, we will always assume that

(2.10) α = 1 +
√

2, r ≥ r0, 1/(1 +
√

2) < r0 < 1.
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We recall that the Z-transform on Tα
r := {z ∈ C : |z| = αr} is defined as

Ff(z) = f̂(z) =
∞∑

j=0

z−jf(j), z ∈ Tα
r .

It follows from Hölder inequality that the Z-transform, f̂(z), is well defined for all f ∈
lp(Z+; X). Moreover, we can relate the Fourier transform of f on Tα

r with the Fourier
transform of (αr)−•f on T1

1 by the formula

F [f ](αreit) = F [(αr)−•f ](eit).

This observation will be very useful in the third section in connection with Theorem 2.7.
The preceding proposition enables us to prove the following properties on the Fourier
transform of the solution of (2.2).

Proposition 2.10. Let T ∈ B(X) be an analytic operator. Then

(2.11) F [r•−1S](z) = zR((z − r)2, r2(I − T )), z ∈ Tα
r \{αr},

and

(2.12) F [r•C](z) = z(z − r)R((z − r)2, r2(I − T )), z ∈ Tα
r \{αr}.

Proof. Given x ∈ X, we define

fn =





x, for n = 0,

0, for n 6= 0.

A direct calculation shows that f̂(z) = x. We consider the following evolution problem

(2.13) ∆2
rxn − r2(I − T )xn = fn for all n ∈ Z+, x0 = x1 = 0.

By Proposition 2.1 the (unique) solution is given by xn+1 = (r•−1S ∗ f)(n). Then zx̂(z) =
F [r•−1S](z)x, z ∈ Tα

r . On the other hand, we note that a direct calculation gives ∆̂rx(z) =
(z − r)x̂(z), for z ∈ Tα

r . Hence, applying Z-transform in (2.13) and then multiplying the
result by z, we obtain zx = ((z− r)2− r2(I−T ))F [r•−1S](z)x, z ∈ Tα

r , obtaining the first
assertion. To prove the second one, we note that by Proposition 2.1 ∆rxn+1 = (r•C ∗f)(n)
and then z(z − r)x̂(z) = F [r•C](z)x, z ∈ Tα

r . Therefore, applying Z-transform in (2.13)
and then multiplying the result by z(z − r), we get the second assertion and the proof is
finished.

Next, we consider the following sequence spaces; for r ≥ r0

l1p,r(Z+; X) := {y = (yn)/y0 = 0, (∆ryn) ∈ lp(Z+; X)} ,

l2p,r(Z+; X) :=
{
y = (yn)/y0 = y1 = 0, (∆2

ryn) ∈ lp(Z+; X)
}

,

lp,I−T (Z+; X) := {y = (yn)/((I − T )yn) ∈ lp(Z+; X)} .

Proposition 2.11. Assume that (2.10) is fulfilled. For each y ∈ lip,r(Z+; X), i = 1, 2, the
Z-transform of y is well defined in Tα

r .
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Proof. For y ∈ l1p,r(Z+; X), we have

(2.14)

||ŷ(z)||X =
∞∑

j=0

|z|−j ||y(j)||X

=
∞∑

j=0

(
1
αr

)j ||
j−1∑

i=0

ri∆ryj−1−i||X

≤
∞∑

j=0

(
1
αr

)j
j−1∑

i=0

ri||∆ryj−1−i||X

≤ C(α, r)||∆ry•||∞,

where C(α, r) is a constant depending on α and r. On the other hand, for y ∈ l2p,r(Z+;X),
we can infer that

(2.15)

||ŷ(z)||X ≤
∞∑

j=0

(
1
αr

)j
j−1∑

i=0

ri
j−i−2∑

k=0

rk||∆2
ryj−i−2−k||X

≤
∞∑

j=0

(
1
αr

)j
j−1∑

i=0

ri
j−i−2∑

k=0

rk||∆2
ry•||∞

≤ C(α, r)||∆2
ry•||∞,

and the proof is finished.

In the following definition we denote l0p,r(Z+;X) := lp(Z+; X).

Definition 2.12. Assume that (2.10) is fulfilled. We say that {Q(z)}z∈Tα
r

is a lp −
lip,r−multiplier, i = 0, 1, 2, if for each f = (fn) ∈ lp(Z+; X) there is a sequence y = (yn) ∈
lip,r(Z+; X) such that ŷ(z) = Q(z)f̂(z), z ∈ Tα

r .

We finish this section with the following proposition.

Proposition 2.13. Assume that (2.10) is fulfilled. The following assertions are equiva-
lent.
(i) {Q(z)}z∈Tα

r
is a lp − lip,r−multiplier, i = 1, 2.

(ii) {(z − r)iQ(z)}z∈Tα
r

is a lp − lp−multiplier, i = 1, 2.

Proof. Initially we consider the case i = 1. To prove (i) ⇒ (ii), for f = (fn) ∈ lp(Z+;X)
there is a sequence y = (yn) ∈ l1p,r(Z+;X) such that ŷ(z) = Q(z)f̂(z), z ∈ Tα

r . Putting
x0 = 0, and xn = ∆ryn, n ≥ 1, we have x = (xn) ∈ lp(Z+; X) and x̂(z) = ∆̂ry(z) =
(z − r)Q(z)f̂(z). To prove (ii) ⇒ (i), for f = (fn) ∈ lp(Z+; X) there is a sequence
y = (yn) ∈ lp(Z+; X) such that ŷ(z) = (z − r)Q(z)f̂(z). Let x = (xn) ∈ l1p,r(Z+; X) be a
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sequence such that 



∆rxn = yn,

x0 = 0.

Indeed, we observe that xn =
n−1∑

i=0

riyn−1−i. Therefore,

(z − r)x̂(z) = ∆̂rx(z) = (z − r)Q(z)f̂(z).

Hence, Q(z) is a lp− l1p,r−multiplier. Finally, we treat the case i = 2. To prove (i) ⇒ (ii),
for f = (fn) ∈ lp(Z+;X) there is a sequence y = (yn) ∈ l2p,r(Z+; X) such that ŷ(z) =
Q(z)f̂(z), z ∈ Tα

r . Putting xn = ∆2
ryn ∈ lp(Z+; X), we get

x̂(z) = (z − r)∆̂ry(z)− z(y1 − ry0) = (z − r)2Q(z)f̂(z).

Hence (z − r)2Q(z) is a lp − lp−multiplier. To prove (ii) ⇒ (i), for f = (fn) ∈ lp(Z+; X)
there is a sequence y = (yn) ∈ lp(Z+; X) such that ŷ(z) = (z − r)2Q(z)f̂(z), z ∈ Tα

r . Let
x = (xn) ∈ l2p,r(Z+;X) be a sequence such that





∆2
rxn = yn,

x0 = x1 = 0.

Indeed, we observe that xn =
n−1∑

i=0

n−i−2∑

j=0

ri+jyn−2−i−j . Therefore,

(z − r)2x̂(z) = ∆̂2
rx(z) = (z − r)2Q(z)f̂(z).

Hence, Q(z) is a lp − l2p,r−multiplier. This completes the proof of the proposition.

3. A Characterization of Maximal Regularity

Having presented in the previous sections preliminary material on R−boundedness and
Fourier multipliers, we will now show how these tools can be used to handle well-posedness
of equation (2.2). The following is a natural extension of the concept of well-posedness to
the continuous to the discrete case.

Definition 3.1. One says that problem (2.2) is well-posed if for each f = (fn) ∈ lp(Z+;X)
there is an unique solution x = (xn) ∈ l2p,r(Z+; X) ∩ lp,I−T (Z+; X) of equation (2.2).

We observe that the space l2p,r(Z+; X)∩ lp,I−T (Z+;X) becomes a Banach space under the
norm

(3.1) |||x||| := ||∆2
rx||p + ||r2(I − T )x||p.

The following result characterizes well-posedness of (2.2) in terms of lp-multipliers.

Proposition 3.2. Let X be a Banach space and let T ∈ B(X) be an analytic operator.
Assume that (2.10) is fulfilled. Then, the following assertions are equivalent.
(i) Problem (2.2) is well-posed.
(ii) {M(z) := (z − r)2((z − r)2 − r2(I − T ))−1 : z ∈ Tα

r , z 6= αr} is a lp − lp−multiplier.
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Proof. (i) ⇒ (ii), applying Z-transform to equation (2.2), we get

(z − r)2x̂(z)− r2(I − T )x̂(z) = f̂(z), z ∈ Tα
r .

By Proposition 2.9, we have x̂(z) = R((z−r)2, r2(I−T ))f̂(z), z ∈ Tα
r , z 6= αr; consequently

R((z− r)2, r2(I−T )) is a lp− l2p,r−multiplier. By Proposition 2.13, we conclude the proof
of (ii).
(ii) ⇒ (i), by Proposition 2.13, R((z − r)2, r2(I − T )) is a lp − l2p,r−multiplier. Hence, for
all f = (fn) ∈ lp(Z+;X) there is a sequence x = (xn) ∈ l2p,r(Z+; X) so that (z − r)2x̂(z)−
r2(I − T )x̂(z) = f̂(z). By uniqueness of the Z-transform, we conclude that x = (xn) is
solution of equation (2.2). In particular, r2(I − T )xn = ∆2

rxn − fn belongs to lp(Z+;X).
To prove the uniqueness of the solution, we observe that by application of the Z-transform
to equation (2.2) with fn ≡ 0, we get x̂(z) = 0, and so x ≡ 0.

Proposition 3.3. Let X be a Banach space and let T ∈ B(X) be an analytic operator;
assume that (2.10) is fulfilled and suppose that problem (2.2) is well-posed. Then (z−r)2 ∈
ρ(r2(I − T )) whenever |z| = αr, z 6= αr and the set {M(z) : |z| = αr, z 6= αr} is R-
bounded.

Proof. By Proposition 2.9 the first assertion follows. On the other hand, by Proposi-
tion 3.2, for all f = (fn) ∈ lp(Z+;X), there is a sequence LMf ∈ lp(Z+; X) such that
L̂Mf(z) = M(z)f̂(z), z ∈ Tα

r , z 6= αr. By the uniqueness of Z-transform the operator
LM : lp(Z+; X) → lp(Z+;X) is well defined. It follows from the Closed Graph Theorem
that LM is in B(lp(Z+; X)). Now the conclusion is a consequence of [12, Proposition 1.4].

The following is the main result of this paper. It shows that the converse of the above
proposition is valid in UMD spaces.

Theorem 3.4. Let X be a UMD space and let T ∈ B(X) be an analytic operator; assume
that (2.10) is fulfilled. Then, the following assertions are equivalent.
(i) Equation (2.2) is well-posed.
(ii) The set {M(z) : |z| = αr, z 6= αr} is R-bounded.
(iii) Equation (2.2) has discrete maximal regularity.

Proof. We note that (i) ⇒ (ii) is the preceding proposition. To prove (ii) ⇒ (iii), we
define kr : Z→ B(X) by

kr(n) =





r2(I − T )rn−1S(n), for n ∈ Z+,

0, otherwise,
and the corresponding operator Kr : lp(Z+; X) → lp(Z+; X) by

[Krf ](n) =
n∑

j=0

kr(j)fn−j = (kr ∗ f)(n), n ∈ Z+.

By Proposition 2.9, (z−r)2 ∈ ρ(r2(I−T )) whenever |z| = αr, z 6= αr. Then, by Proposition
2.10, we have

k̂r(z) = r2(I − T )F [r•−1S](z) = r2(I − T )zR((z − r)2, r2(I − T )) = z(M(z)− I),
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where z ∈ Tα
r , z 6= αr.

Define M(t) := M(αreit), t ∈ (−π, 0) ∪ (0, π). We note that

M ′(t) = 2iαeit(αeit − 1)−1[M(t)−M(t)2].

Define N(t) := αreit[M(t)−I], then N(t) is R-bounded by hypothesis and Remark 2.4(b).
A calculation shows that

(eit − 1)(eit + 1)N ′(t) = iαreit(eit − 1)(eit + 1)[M(t)− I]

+ 2iα2re2it(eit−1)(eit+1)
αeit−1

[M(t)−M(t)2].

We observe that |αeit − 1| ≥ √
2. Hence, the set

{2iα2re2it(eit − 1)(eit + 1)
αeit − 1

},

is bounded by 4α2r
√

2. It shows that the set {(eit−1)(eit +1)N ′(t)} is R−bounded thanks
to Remark 2.4 again. We conclude, from Theorem 2.7, that there exists TN ∈ B(lp(Z, X))
such that F [TNg](eit) = N(t)F [g](eit) for all g ∈ lp(Z+; X). Let f ∈ lp(Z+; X) and define
g := (αr)−•f. Then g ∈ lp(Z+; X) because αr > 1, and we have for all z ∈ Tα

r

F [(αr)•TN ((αr)−•f)](z) = F [TN ((αr)−•f)](eit)
= N(t)F [(αr)−•f ](eit)
= N(t)F [f ](αreit)
= F [kr](αreit)F [f ](αreit)
= F [kr ∗ f ](αreit)
= F [Krf ](z).

Then by uniqueness of the Z-transform, we conclude that (αr)−•Krf = TN ((αr)−•f) and
we have

||(αr)−•Krf ||p = ||TN ((αr)−•f)||p ≤ M ||(αr)−•f ||p ≤ M ||f ||p.
Hence (αr)−•Kr belongs to B(lp(Z+, X)). It follows from the Closed Graph Theorem
that Kr ∈ B(lp(Z+, X)) then (iii) follows. To prove (iii) ⇒ (i), by Proposition 2.1 we
known that x(n) = (r•−1S ∗ f)(n − 1) is the unique solution of equation (2.2). Then
∆2

rx(n) = r2(I − T )(r•−1S ∗ f)(n − 1) + f(n) = [Krf ](n − 1) + f(n). Hence x = (xn) ∈
l2p,r(Z+; X) ∩ lp,I−T (Z+; X), and the proof is finished.

Since Hilbert spaces are UMD spaces, we obtain as immediate consequence the following
corollary.

Corollary 3.5. Let H be a Hilbert space and let T ∈ B(H) be an analytic operator; assume
that (2.10) is fulfilled. Then, the following assertions are equivalent.
(i) Equation (2.2) is well-posed.
(ii) supz∈Tα

r , z 6=αr ||(z − r)2((z − r)2 − r2(I − T ))−1|| < ∞
(iii) Equation (2.2) has discrete maximal regularity.

Remark 3.6. a) We note that when (2.2) has discrete maximal regularity, then (xn) ∈
l2p,r(Z+; X) ∩ lp,I−T (Z+; X) whenever (fn) ∈ lp(Z+; X). It establishes an isomorphism
between the set of data (fn) and the set of solutions (xn).
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b) For each f = (fn) ∈ lp(Z+;X) and under the equivalent conditions of the above
theorem, there exists a constant C > 0 such that ||∆2

rx||p + ||r2(I − T )x||p ≤ C||f ||p,
for all x = (xn) ∈ l2p,r(Z+; X) ∩ lp,I−T (Z+; X), that is, the application R : lp(Z+;X) →
l2p,r(Z+; X) ∩ lp,I−T (Z+; X) given by (fn) 7→ (xn) is continuous.

Let f = (fn) ∈ lp(Z+; X). We finish this paper with an application to the following
semilinear evolution problem

(3.2) ∆2
rx− r2(I − T )x = G(x) + ρf,

where G is a Frechét differentiable function and ρ > 0 is a small parameter.

Theorem 3.7. Let X be a UMD space and T ∈ B(X) be an analytic operator. Assume
that (2.10) is fulfilled and assume that

(i) the set {M(z) : |z| = αr, z 6= αr} is R-bounded.
(ii) G maps l2p,r(Z+;X) ∩ lp,I−T (Z+; X) into lp(Z+; X); G(0) = 0; G is a continuously

(Frechét) differentiable function at x = 0 and G′(0) = 0.
Then, there exists ρ∗ > 0 such that the equation (3.2) is solvable for each ρ ∈ [0, ρ∗),

with solution xρ := (xn) ∈ l2p,r(Z+;X) ∩ lp,I−T (Z+;X).

Proof. Define the operator L : l2p,r(Z+;X) ∩ lp,I−T (Z+; X) → lp(Z+;X) by L(x) =
∆2

rx− r2(I − T )x. We consider for ρ ∈ (0, 1) the one parameters family

H[x, ρ] := −L(x) + G(x) + ρf.

Keeping in mind that G(0) = 0 we see that H[0, 0] = 0. Also, by hypothesis, H is
continuously differentiable at (0, 0). We observe that L is an isomorphism onto. In fact,
by uniqueness L is injective. By Theorem 3.4, L is surjective. By definition of the norm
in (3.1), L is bounded. Now, the claim follows by the Open Mapping Theorem. Hence the
partial Frechét derivative H1

(0,0) = −L is invertible. The conclusion of the theorem now
follows from the Implicit Function Theorem (see [27, Theorem 17.6]).

In the very special case that T = I and X = R we obtain the following scalar result
which, in our best know, is also new.

Corollary 3.8. Assume that (2.10) is fulfilled, let f = (fn) be in lp(Z+;R). Assume that
G is like in the preceding theorem. Then, there exists ρ∗ > 0 such that the discrete time
evolution equation

(3.3) ∆2
rx = G(x) + ρf,

is solvable for each ρ ∈ [0, ρ∗), with solution xρ := (xn) ∈ l2p,r(Z+;R) ∩ lp(Z+;R).

Next, we exhibit a concrete example of mapping G like in Theorem 3.7.

Example 3.9. Let H be a Hilbert space and T ∈ B(H). Let G be a map from l2p,r(Z+; H)∩
lp,I−T (Z+;H) into lp(Z+;H) defined by

G(h)(n) =< ∆2
rhn, ∆2

rhn > .

We observe that

||G(h)||p ≤ ||∆2
rh||∞||∆2

rh||p, h ∈ l2p,r(Z+; X) ∩ lp,I−T (Z+; X),
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whence G is well defined and G(0) = 0. Also, we get

G′(x)(h) = 2 < ∆2
rx,∆2

rh >, x, h ∈ l2p,r(Z+;X) ∩ lp,I−T (Z+;X),

so G′(0) = 0. On the other hand, we can infer that

||G′(x)−G′(x0)|| ≤ 2|||x− x0|||, x, x0 ∈ l2p,r(Z+; X) ∩ lp,I−T (Z+; X),

then G is a continuously (Frechét) differentiable function.

Example 3.10. Assume that (2.10) is fulfilled; let µ be a positive real number and f =
(fn) ∈ lp(Z+;R). Then, there exists ρ∗ > 0 such that the discrete time evolution problem





∆2
rxn = [∆2

rxn]µ + ρfn, n ∈ Z+,

x0 = x1 = 0.

is solvable for each ρ ∈ [0, ρ∗), with solution xρ := (xn) ∈ l2p,r(Z+;R) ∩ lp(Z+;R).
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