ALMOST AUTOMORPHIC SOLUTIONS OF DIFFERENCE EQUATIONS
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ABSTRACT. We introduce discrete almost automorphic functions (sequences) defined on the
set of integers with values in a Banach space X, extending the theory of discrete almost
periodic functions. Given a bounded linear operator T defined on X and a discrete al-
most automorphic function f(n), we give criteria for the existence of discrete almost auto-
morphic solutions of the linear difference equation Au(n) = Tu(n) + f(n). We also prove
the existence of a discrete almost automorphic solution of the nonlinear difference equation
Au(n) = Tu(n) + g(n,u(n)) assuming g(n,z) is discrete almost automorphic in n for each
x € X, satisfies a global Lipschitz type condition and takes values on X.

1. INTRODUCTION

The theory of difference equations has grown at an accelerated pace in the last decades. It
now occupies a central position in applicable analysis and play an important role in mathe-
matics as a whole.

A very important aspect of the qualitative study of the solutions of difference equations is
their periodicity. Periodic difference equations and systems have been treated, among others,
by Agarwal and Popenda [2], Corduneanu [10], Halanay [18], Pang and Agarwal [21], Sugiyama
[25], Elaydi [11] and Agarwal [1]. Almost periodicity of a discrete function was first introduced
by Whalter [27, 28] and then studied by Corduneanu [10]. Recently, several papers [3, 19, 20,
22, 23, 24, 35] are devoted to study almost periodic solutions of difference equations. However,
to the best of our knowledge, the concept of discrete almost automorphic functions has not
been introduced in the literature until now. This motivates us to investigate their properties
as well as to study discrete almost automorphic solutions of linear and nonlinear difference
equations.

The theory of continuous almost automorphic functions was introduced by S. Bochner, in
relation to some aspects of differential geometry [7, 5, 6, 4]. A unified and homogeneous
exposition of the theory and its applications was first given by N’Guérékata in his book [16].
After that, there has been a real resurgence interest in the study of almost automorphic
functions.

Important contributions to the theory of almost automorphic functions have been obtained,
for example, in the papers [15, 29, 30, 31, 32, 33, 34], in the books [16, 17, 33] (concerning
almost automorphic functions with values in Banach spaces), and in [26] (concerning almost
automorphy on groups). Also, the theory of almost automorphic functions with values in
fuzzy-number-type spaces was developed in [12] (see also Chapter 4 in [17]). Recently, in [13]
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and [14], the theory of almost automorphic functions with values in a locally convex space
(Fréchet space) and a p-Fréchet space has been developed.

The range of applications of almost automorphic functions include at present linear and non-
linear evolution equations, integro-differential and functional-differential equations, dynamical
systems, etc. A recent reference is the book [17].

This paper is organized as follows. In Section 2, we present the definition of discrete almost
automorphic functions (sequences) and give some basic and related properties for our purposes.
In Section 3, we discuss the existence of almost automorphic solutions of first order linear
difference equations. In Section 4, we discuss the existence of almost automorphic solutions of
nonlinear difference equations of the form Au(n) = Tu(n) + g(n,u(n)), where T' is a bounded
operator defined on a Banach space X.

2. THE BASIC THEORY

Let X be a real or complex Banach space. We recall that a function f :Z — X is said to
be discrete almost periodic if for any positive € there exists a positive integer N (e€) such that
any set consisting of N consecutive integers contains at least one integer p with the property
that

[f(k+p)—f)ll <€, keZ

In the above definition p is called an e— almost period of f(k) or an e— translation number.
We denote by AP;(X) the set of discrete almost periodic functions.

Bochner’s criterion: f is a discrete almost periodic function if and only if

(N) for any integer sequence (kI,), there exist a subsequence (k,) such that f(k + k)
converges uniformly on Z as n — co. Furthermore, the limit sequence is also a discrete almost
periodic function.

The proof can be found in [9, Theorem 1.26, pp. 45-46]. Observe that functions with the
property (IN) are also called normal in the literature (cf. [1, p.72] or [9]).

The above characterization, as well as the definition of continuous almost automorphic
functions (cf. [16]) motivates the following definition.

Definition 2.1. Let X be a (real or complex) Banach space. A function f :7Z — X is said to
be discrete almost automorphic if for every integer sequence (k,), there exist a subsequence
(ky) such that

lim f(k+ ky) = F(k)

n—oo

is well defined for each k € Z and
lim ?(k - kn) = f(k)

n—oo
for each k € Z.
Remark 2.2.
(i) If f is a continuous almost automorphic function in R then f |z is discrete almost
automorphic.

(ii) If the convergence in Definition 2.1 is uniform on Z, then we get discrete almost peri-
odicity.
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We denote by AA4(X) the set of discrete almost automorphic functions. Such as the contin-
uous case we have that discrete almost automorphicity is a more general concept than discrete
almost periodicity, that is

Example 2.3. Let us consider the function f :Z — R defined by

1
k) :=

fk) 2 + cos(k) + cos(v/2k)

this function is discrete almost automorphic since it is the restriction to Z of the almost
automorphic function f(t) := m (see e.g. [8]). We will see that it is not dis-
crete almost periodic. In fact, let N be a nonnegative integer and consider the set I =
{1,2,3,4,..., N}. We first note that f(0+p)—f(0) > 0 for all p € I, since cos(s)+cos(v/2s) < 2.
Now let g : I — R be defined by g(p) := f(p) — f(0). It is clear that there is a ko € I such that
g(ko) < g(p) for allp en I. Let € := g(ko) > 0, then for k = 0 we have

|f(0+p) — f(O)=lg(p)| > ¢, Vpe L

Therefore f is not discrete almost periodic.

Discrete almost automorphic functions have the following fundamental properties.

Theorem 2.4. Let u,v be discrete almost automorphic functions; then the following assertions
are valid
(i) w+ v is discrete almost automorphic;
(ii) cu is discrete almost automorphic for every scalar c;
(iii) For each fized | in Z, the function vy : Z — X defined by wi(k) := u(k + 1) is discrete
almost automorphic;
(iv) The function G : Z — X defined by u(k) := u(—k) is discrete almost automorphic;
(v) sup ||u(k)| < oo, that is, u is a bounded function;
keZ

(vi) sup [[u(k)|| < sup [[u(k)]|, where
keZ keZ
lim u(k + k,) =u(k) and lim u(k — k) = u(k).
n—oo n—oo
Proof. The proof of all statements follows the same lines as in the continuous case (see [16,
Theorem 2.1.3]) and therefore is omitted. O
As a consequence of the above theorem, the space of discrete almost automorphic functions
provided with the norm
[ullq := sup [[u(k)],
keZ

becomes a Banach space. The proof is straightforward and therefore omitted.

Theorem 2.5. Let X,Y be Banach spaces and u : Z — X an discrete almost automorphic
function. If ¢ : X — Y 1is a continuous function, then the composite function pou :7Z —Y
1s discrete almost automorphic.
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o(v(k)). In similar way, we have lim,, o ¢(v(k — ky,)) = d(limy—oo v(k — ky)) = o(u(k)),
therefore ¢ o w is in AA4(Y). O

Corollary 2.6. If A is a bounded linear operator in X and u : Z — X a discrete almost
automorphic function, then Au(k),k € Z is also discrete almost automorphic.

Theorem 2.7. Let uw : Z — C and f : Z — X be discrete almost automorphic. Then
uf : Z — X defined by (uf)(k) = u(k)f(k),k € Z is also discrete almost automorphic.

Proof. Let (k) a sequence in Z. There exist a subsequence (k) of (k/,) such that lim, ., u(k+
kn) = u(k) is well defined for each k € Z and lim, .o u(k — ky,) = u(k) for each k € Z. Also
we have lim,, o f(k+ ky) = f(k) is well defined for each k € Z and lim,, oo f(k — k) = f(k)
for each k € Z. The proof now follows from Theorem 2.4 and the identities

u(k + k) f(k + kn) — (k) f(k) = u(k + kn) (f (k + k) — f(K)) + (u(k + kn) —u(k)) f(K),

and

U(k — kn) f(k = kn) — u(k) f (k) = T(k — k) (f(k = kn) — f(K)) + (@(k — kn) — u(k)) f(K),
valid for all k € Z. O

For applications to nonlinear difference equations the following definition, of discrete almost
automorphic function depending on one parameter, will be useful.

Definition 2.8. A function v : Z x X — X is said to be discrete almost automorphic in k
for each = € X, if for every sequence of integers numbers (k/,), there exist a subsequence (ky,)
such that

lim u(k + kn,z) =: u(k, z)

n—oo

is well defined for each k € Z, x € X, and
lim u(k — ky,z) = u(k, x)

n—oo

for each k € Z and z € X.
The proof of the following result is omitted (see [16, Section 2.2]).
Theorem 2.9. If u,v:Z x X — X are discrete almost automorphic functions in k for each

x in X, the following are true

i) u+v is discrete almost automorphic in k for each x in X.
(i) cu is discrete almost automorphic in k for each x in X, where c is an arbitrary scalar.
(iii) sup |u(k,z)|| = M, < oo, for each z in X.

)

(iv sup |a(k,z)|| = Ny < 0o, for each x in X, where U is the function in Definition 2.8.

The following result will be used to study almost automorphy of solution of nonlinear
difference equations.

Theorem 2.10. Let f : Z x X — X be discrete almost automorphic in k for each x in X, and
satisfies a Lipschitz condition in x uniformly in k, that is

Suppose ¢ : 7 — X is discrete almost automorphic, then the function U : Z — X defined by
U(k) = u(k,p(k)) is discrete almost automorphic.
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Proof. Let (k) be a sequence in Z. There exist a subsequence (ky,) of (k},) such that lim, . f(k+
kn,2) = f(k,z) for all k € Z,x € X and lim,, .o f(k — kn,z) = f(k,z) for each k € Z,x € X.
Also we have lim,,_,~ ¢(k + k) = @(k) is well defined for each k € Z and lim,,_,oc B(k — kpn) =
(k) for each k € Z. Since the function w is Lipschitz, using the identities

F(ktkn, o(ktkn)) = f (k, B(k)) = f(ktEn, o(ktkn)) = f (kt-Fn, B (k) +f (kt-En, B (K)) = f (K, B (k)

and

F(k—kn, B(k—kn))—f (k, p(k)) = f(k—kn, B(k—kn))—F (k—kn, @(k))+f (k—kn, p(k))—f (k, o(k)),

valid for all & € Z, we get the desired proof. O
We will denote AA4(Z x X) the space of the discrete almost automorphics functions in

k € Z, for each x in X.

Let A denote the forward difference operator of the first order, i.e. for each u : Z — X, and
n € 7Z, Au(n) =u(n+1) — u(n).

Theorem 2.11. Let {u(k)}rez be a discrete almost automorphic function, then Au(k) is also
discrete almost automorphic.

Proof. Since Au(k) = u(k+1)—wu(k), then by (i) and (iii) in Theorem 2.4, we have that Au(k)
is discrete almost automorphic. O

The following result will be the key in the study of discrete almost automorphic solutions
of linear and nonlinear difference equations.

Theorem 2.12. Let v : Z — C be a summable function, i.e.
Z lv(k)| < oo.
keZ
Then for any discrete almost automorphic function u : Z — X the function w(k) defined by
wk) => v(huk—1), keZ
leZ
1s also discrete almost automorphic.

Proof. Let (k) be a arbitrary sequence of integers numbers. Since u is discrete almost auto-
morphic there exists a subsequence (k) of (k/,) such that

lim u(k + k,) = u(k)
is well defined for each k € Z and
lim w(k — k) = u(k)

n—oo

for each k € Z. Note that
)] <> lv@llulk = DI <> @[l < oo,
leZ leZ
then, by Lebesgue’s dominated convergence theorem, we obtain

Tim w(k+ ko) = > v(l) T u(k+ k1) = > v(l)ak - 1) = w(k).

leZ leZ
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In similar way, we prove

lim w(k — ky) = w(k),

n—oo
and then w is discrete almost automorphic. O
Remark 2.13.
(i) The same conclusions of the previous results holds in case of the finite convolution
k
wk) =Y vk—=0Du(l), keZ
1=0
and the convolution
k
w(k) =Y v(k—Nu(l), ke
l=—0c0

(ii) The results are true in case of consider an operator valued function v : Z — B(X) such

that
> llw(k)]] < oo

keZ
A typical example is v(k) = T*, where T € B(X) satisfies ||T|| < 1.

3. ALMOST AUTOMORPHIC SOLUTIONS OF FIRST ORDER LINEAR DIFFERENCE EQUATIONS

Difference equations usually describes the evolution of certain phenomena over the course
of time. In this section we deal with those equations known as the first-order linear difference
equations. These equations naturally apply to various fields, like biology (the study of com-
petitive species in population dynamics), physics (the study of motions of interacting bodies),
the study of control systems, neurology, and electricity, see [11, Chapter 3].

We are interested in finding discrete almost automorphic solutions of the following system
of first order linear difference equations, written in vector form

(3.1) Au(n) = Tu(n) + f(n)

where T is a matrix or, more generally, a bounded linear operator defined on a Banach space
X and fisin AA4(X). Note that equation (3.1) is equivalent to

(3.2) u(n +1) = Au(n) + f(n),

where A = I +T. We begin studying the scalar case. We denote D :={z€ C : |z| =1}.

Theorem 3.1. Let X be a Banach space. If A= X € C\D and f : Z — X is discrete almost

automorphic, then there is a discrete almost automorphic solution of (3.2) given by
n

(i) u(n) = Z AR f(k — 1) in case |\ < 1; and

k=—00
00

(ii) u(n) = — Z A ELE(E) in case |A| > 1.

k=n

Proof.
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(i) Define v(k) = A¥. Then v € £}(Z) and hence, by Theorem 2.12, we obtain u € AA4(X).
Next, we note that u is solution of (3.2) because
n+1 n

uln+1)= Y NPFf—1)= Y NFFf(k— 1)+ f(n) = Au(n) + f(n).

k=—o00 k=—00

(ii) Define v(k) = A~* and since |A\| > 1 we have v € £}(Z). It follows, by Theorem 2.12,
that u € AA4(X). Finally, we check that u is solution of (3.2) as follows

=S R p(h) = - (Z X (k) - f(n)) =AY AR + ()
k=n k=n

k=n+1

= Au(n)+ f(n).

u(n+1)

g

As a consequence of the previous theorem, we obtain the following result in case of a matrix

A.

Theorem 3.2. Suppose A is a constant n X n matriz with eigenvalues X\ ¢ D. Then for any
function f € AA4(C™) there is a discrete almost automorphic solution of (3.2).

Proof. Tt is well known that there exists a nonsingular matrix S such that S~'AS = B is an
upper triangular matrix. In (3.2) we use now the substitution u(k) = Sv(k) to obtain

(3.3) v(k+1) = Bu(k) + ST ' f(k), kecZ.

Obviously, the system (3.3) is of the form as (3.2) with S~!f(k) a discrete almost automorphic
function. The general case of an arbitrary matrix A can now be reduced to the scalar case.
Indeed, the last equation of the system (3.3) is of the form

(3.4) z2(k+1)=Xz(k) +c(k), keZ

where A is a complex number and c(k) is a discrete almost automorphic function. Hence, all
we need to show is that any solution z(k) of (3.4) is discrete almost automorphic. But this is
the content of Theorem 3.1. It then imply that the nth component v, (k) of the solution v(k)
of (3.3) is discrete almost automorphic. Then substituting v, (k) in the (n — 1)th equation
of (3.3) we obtain again an equation of the form (3.4) for v,_1(k), and so on. The proof is
complete. O

As an application of the above Theorem and [1, Theorem 5.2.4] we obtain the following
Corollary.

Corollary 3.3. Assume that A is a constant n xn matriz with eigenvalues \ ¢ D, and suppose
that f € AA4(C™) is such that

1/ (k)| < en™
for all large k, where ¢ > 0 and n < 1. Then there is a discrete almost automorphic solution
u(k) of (3.2), which satisfies

[u(k)]] < e,

for some v > 0.

We can replace A € C in Theorem 3.1 by a general bounded operator A € B(X), and use
(ii) of Remark 2.13 in the proof of the first part of Theorem 3.1, to obtain the following result.
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Theorem 3.4. Let X be a Banach space and A € B(X) such that ||A|| < 1. Let f € AA4(X).
Then there is a discrete almost automorphic solution of (3.2).

We can also prove the following result.

Theorem 3.5. Let X be a Banach space. Suppose f € AA4(X) and A = Zé\/ﬂ APy where
the complex numbers A, are mutually distinct with |A\g| # 1, and (Py)i<k<n forms a complex
system Zévzl P, = I of mutually disjoint projections on X. Then equation (3.2) admits a
discrete almost automorphic solution.

Proof. Let k € {1,..., N} be fixed. Applying the projection P} to equation (3.2) we obtain
Pru(n + 1) = PyAu(n) + Py f(n) = Mg Pru(n) + Pif(n).

By Corollary 2.6 we have Pyf € AA4(X), since Py is bounded. Therefore, by Theorem 3.1,

we get Pru € AA4(X). We conclude that u(n) = Z,ivzl Piu(n) € AA4(X) as a finite sum of

discrete almost periodic functions. O

We finish this section with the following simple example concerning the heat equation (cf.
[11, p.157]).

Example 3.6. Consider the distribution of heat through a thin bar composed by a homogeneous
material. Let x1,xo, ...,z be k equidistant points on the bar. Let T;(n) be the temperature at
time t, = (At)n at the point z;, 1 < i < k. Under certain conditions one may derive the
equation

(3.5) Tn+1)=AT(n)+ f(n), neZ

where the vector T'(n) consist of the components T;(n), 1 < i < k, and A is a tridiagonal
Toeplitz matrix. Its eigenvalues may be found by the formula

An=(1-2a)+ acos(ni), n=12..,k

k+1
where « is a constant of proportionality concerning the difference of temperature between the
a point x; and the nearby points x;—1 and x;+1 (see [11]). Assuming

0<a<1/2
we obtain |A| < 1 for all eigenvalues \ of A. Theorem 3.4 then implies that for each f €
AA4(CF) there is a discrete almost automorphic solution of (3.5).

4. ALMOST AUTOMORPHIC SOLUTIONS OF SEMILINEAR DIFFERENCE EQUATIONS

We want to find conditions under which is possible to find discrete almost automorphic
solutions to the equation

(4.1) u(n+1) = Au(n) + f(n,u(n)), ne€Z,

where A is a bounded linear operator defined on a Banach space X and f € AA4(Z x X).
Our main result in this section is the following theorem for the scalar case.

Theorem 4.1. Let A:=X€ C\D and f: Z x X — X discrete almost automorphic in k for
each x € X. Suppose that f satisfies the following Lipschitz type condition

(4.2) 1 £ (k@) — f(k,y)ll < Llle — yl, for all 2,y € X and k € Z.

Then equation (4.1) have a unique discrete almost automorphic solution satisfying
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(i) u(n) = z”: AN7Ef(k— 1, u(k — 1)) in case |\ <1 — L and

k=—o00

(i) u(n) = — Z AR (ke u(k)) in case |\ > 14 L.
k=n

Proof. Case |A\| <1— L : We define the operator F': AA4(X) — AA4(X), by

Flp)n)= Y N*f(k=1,p(k—-1)), neZ

k=—o00

Since ¢ € AA4(X) and f(k,x) satisfies (4.2), we obtain by Theorem 2.10 that f(-,¢(+)) is in
AA4(X). So F is well-defined thanks to Theorem 2.12. Now, given uj,us € AAyz(X), we have

1F(u1) = Fuz)lla < sup Y A" 7| f(k = Lu(k = 1)) = f(k = Lua(k = 1))

nezszoo
n

< sup Y AFLfluy(k — 1) — ua(k — 1)

nEZk:_oo

n o0 )
< Llug —ugflasup Y [A"7F = Llluy — up|lgsup Y A
neZ " neL
) J

< Ljus — U2Hd1_7

Al

Since |A| < 1 — L we obtain that the function F' is a contraction. Then there exist an unique
n

function u in AA4(X) such that Fu = u. That is, u satisfies u(n) = Z AEf(k—1,u(k—1))
k=—o00
and hence u is solution of equation (4.1) (cf. the proof of (i) in Theorem 3.1).
Case |A| > 1+ L: We define F': AA;(X) — AA4(X), by
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and with similar arguments as in the previous case we obtain that F' is well-defined. Now,
given uy,us € AA4(X), we have

1 (ur) = Flug)lla < ilégZW""“Hf(hM(k))—f(/@m(k))H

k=n
[e.e]
< sup Y APTFLfun (k= 1) — ug(k — 1)|
nEZk:n
o
< Lfug — ugflasup Y |A*F!
neL

k=n

(o)
= Llfur —ugflasup Y [ATPT (taking j =k —n)
nez —0

1
< Llu — U2||dwi_1-

Therefore F' is a contraction and then there exist an unique function u € AA4(X) such that

Fu = u. The function u satisfies
o0

u(n) ==Y N f(ku(k), neZ,

k=n
and hence is a solution of equation (4.1) (cf. the proof of (ii) in Theorem 3.1).

In the particular case f(k,z) := h(k)g(z) we obtain the following corollary.
Corollary 4.2. Let A:= X € C\ D. Suppose that g satisfies a Lipschitz condition

(4.3) lg(z) =9Il < Lllz —yl, for all z,y € X.
Then for each h € AA4(X), equation (4.1) have a unique discrete almost automorphic solution
whenever |\| < 1 — Ll||h||qg or |A] > 1+ L||hl|4.

The case of a bounded operator A can be treated assuming extra conditions on the operator.
The proof of the next result follows the same lines of the first part in the proof of Theorem
4.1, using (ii) of Remark 2.13.

Theorem 4.3. Let A € B(X) and suppose that f € AAG(Z x X) is such that
(4.4 1k, ) — FUe )l < Lllz — yl, for all z,y € X and k € Z.

Then equation (4.1) have a unique discrete almost automorphic solution whenever ||A|| < 1—L.

5. CONCLUSION AND FUTURE DIRECTIONS

This paper is the started point to research discrete almost automorphic functions. The aim
is to present for the first time a brief exposition of the theory and its application to the field
of difference equations in abstract spaces. We first state, for future reference, several results
which can be directly deduced from the continuous case and then, we analyze the existence of
discrete almost automorphic solutions of linear and nonlinear difference equations in the scalar
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and in the abstract setting. Many questions remain open, as for example to state explicitly
the case |A\| = 1 in Theorem 3.1, which should require an additional condition on the Banach
space X (cf. [16, Theorem 2.4.6]) and thus to extend Corduneanu’s Theorem to the abstract
Banach space setting (see [1, Theorem 2.10.1, p.73]). Another question of interest is to prove
the converse of (i) in Remark 2.2, that is, assuming that u(n) is a discrete almost automorphic
function, to find an almost automorphic function f(¢), (¢ € R) such that u(n) = f(n) for all
n € Z (see [9, Theorem 1.27] in the almost periodic case). Concerning almost automorphic
solutions of difference equations, it remain to study discrete almost automorphic solutions of
Volterra difference equations as well as discrete almost automorphic solutions of functional
difference equations with infinite delay. This topics should be handled by looking at the recent
papers of Song [22, 23].
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