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Abstract. Using a generalization of the semigroup theory of linear operators, we prove

existence and uniqueness of mild solutions for the semilinear fractional order differential

equation

Dα+1
t u(t) + µDβ

t u(t)−Au(t) = f(t, u(t)), t > 0, 0 < α ≤ β ≤ 1, µ ≥ 0,

with the property that the solution can be written as u = f + h where f belongs

to the space of periodic (resp. almost periodic, compact almost automorphic, almost

automorphic) functions and h belongs to the space P0(R+, X) := {φ ∈ BC(R+, X) :

limT→∞
1
T

∫ T
0
||φ(s)||ds = 0}. Moreover, this decomposition is unique.

1. Introduction

Our concern in this paper is the existence, uniqueness and regularity of bounded solu-

tions for fractional order differential equations of the form

(1.1) Dα+1
t u(t) + µDβ

t u(t)− Au(t) = f(t, u(t)), t > 0,

with prescribed initial conditions u(0) and u′(0), and where A : D(A) ⊂ X → X is sec-

torial of angle βπ/2, f is a vector-valued function, and Dγ
t denotes the Caputo fractional

derivative of order γ.
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Fractional order differential equations represent a subject of increasing interest in dif-

ferent contexts and areas of research, see e.g. [1, 3, 13, 14, 16, 27, 29], the survey paper

[11] and the references therein. Our motivation to study equation (1.1) comes from recent

investigations on the subject. Indeed, in the article [24] the author studied existence and

uniqueness of solutions for the abstract equation (1.1) in the special case α = β and in

the article [31] the authors studied the nonlinear two-term time fractional diffusion wave

equation (1.1) with 0 < α < β − 1 and A = d2

dx2
.

In the recent paper [15], asymptotic behavior for mild solutions of (1.1) was stud-

ied. However, to the best of our knowledge, no study has investigated the existence and

uniqueness of pseudo asymptotic mild solutions for equation (1.1).

The concept of pseudo asymptotic solutions, which is the central subject in this paper,

was introduced by Zhang [33], [34], [35] for almost periodic functions in the early nineties.

Since then, such a notion became of great interest. For more on the concepts of pseudo-

almost periodicity, pseudo-almost automorphy and related issues, we refer the reader to

[32] and [17].

In [15] the authors proved that it is possible to give an abstract operator approach to

equation (1.1) by defining first an ad-hoc solution family of strongly continuous operators

Sα,β(t) for (1.1) in case f ≡ 0. It turns out, that it is a particular case of an (a, k)-

regularized family [19] and a generalization of the semigroup theory. Then, the solution

of equation (1.1) can be written in terms of a kind of variation of constants formula. It

give us the necessary framework to apply an operator theoretical approach in the analysis

of pseudo asymptotic solutions for the abstract fractional order differential equation (1.1).

We outline the plan of the paper as follows. In section 2, we recall the concept of

fractional order derivatives and some properties of (α, β)µ-regularized families. In section

3 we consider the linear case, that is f(t, u(t)) = f(t) and show existence and uniqueness

of pseudo asymptotic solutions of our problem. The existence, uniqueness and the pseudo

asymptotic behavior of mild solutions of the semi-linear problem is investigated in Section
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4. Existence is proved by means of the contraction mapping theorem. Finally, we conclude

the paper by giving a concrete example where the situation in the previous sections can

be applied.

2. Preliminaries

Let α > 0, m = dαe and u : [0,∞) → X, where X is a complex Banach space. We

denote by R+ the closed interval [0,∞). The Caputo fractional derivative of u ∈ C(R+)

of order α is defined by

Dα
t u(t) :=

∫ t

0

gm−α(t− s)u(m)(s)ds, t > 0,

where gβ(t) := tβ−1

Γ(β)
, t > 0, β > 0, and in case β = 0 we set g0(t) := δ0, the Dirac measure

concentrated at the origin. When α = n is integer, we define Dn
t := dn

dtn
, n ∈ N.

We denote by

BC(X) := {f : R→ X : f is continuous, ||f ||∞ := sup
t∈R
||f(t)|| <∞},

the Banach space of X-valued bounded and continuous functions on R, with natural norm.

Now we turn our attention to the family of function spaces built on X and which will

play a key role in our study.

Let PT (X) := {f ∈ BC(X) : f(t+ T ) = f(t) ∀t ∈ R} be the space of all vector-valued

periodic functions, with fixed period T > 0. We denote by AP (X) the space of almost

periodic functions (in the sense of Bohr) which consists of all functions f ∈ BC(X) such

that for each ε > 0 there exists a T > 0 such that every subinterval of R of length T

contains at least one point τ such that ||f(t+τ)−f(t)||∞ ≤ ε. This definition is equivalent

to the so-called Bochner criterion (cf. [26, Theorem 3.1.8]), namely, f ∈ AP (X) if and

only if for every sequence of reals (s′n) there exists a subsequence (sn) such that (f(·+sn))

is uniformly convergent on R.
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The space of compact almost automorphic functions will be denoted by AAc(X). Recall

that a continuous bounded function f belongs to AAc(X) if and only if for all sequence

(s′n) of real numbers, there exists a subsequence (sn) ⊂ (s′n) such that limn→∞ f(t+sn) =:

f(t) and limn→∞ f(t− sn) = f(t) uniformly over compact subsets of R.

The space of almost automorphic functions is defined as follows

AA(X) := {f ∈ BC(X) : for all (s′n), there exists (sn) ⊂ (s′n) such that

lim
n→∞

f(t+ sn) =: f(t) and lim
n→∞

f(t− sn) = f(t)∀t ∈ R},

and is endowed with the norm || · ||∞. Almost automorphic functions were introduced by

Bochner in connection to some aspects of differential geometry [6, 5, 4, 7]. For more details

about this topic we refer to the book [26] where the author gave an important overview

about the theory of almost automorphic functions and their applications to differential

equations. We note that more general classes of function spaces have been introduced

and recently applied to semi-linear differential equations (see [18] and references therein).

We have that PT (X), AP (X), AAc(X) and AA(X) are Banach spaces with the norm

|| · ||∞ and the following inclusions hold:

PT (X) ⊂ AP (X) ⊂ AAc(X) ⊂ AA(X) ⊂ BC(X).

Now we define the space P0(R+, X) := {f ∈ BC(R+, X) : limT→∞
1
T

∫ T
0
||f(s)||ds =

0}, and define the space of pseudo asymptotically periodic functions as PPT (R+, X) :=

PT (X) ⊕ P0(R+, X). Analogously, we define the space of pseudo asymptotically almost

periodic functions PAP (R+, X) := AP (X) ⊕ P0(R+, X), the space of pseudo asymptot-

ically compact almost automorphic functions, PAAc(R+, X) := AAc(X) ⊕ P0(R+, X),

and the space of pseudo asymptotically almost automorphic functions PAA(R+, X) :=

AA(X)⊕ P0(R+, X).
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We have the following natural inclusions

PPT (R+, X) ⊂ PAP (R+, X) ⊂ PAAc(R+, X) ⊂ PAA(R+, X) ⊂ BC(R+, X).

Note that all the inclusions are proper. Let Λ ∈ {PT (X), AP (X), AAc(X), AA(X)}.

Definition 2.1. We say that a function u is a pseudo asymptotic solution of the equa-

tion (1.1) if u is a solution and belongs to any of the spaces PPT (R+, X), PAP (R+, X),

PAAc(R+, X) or PAA(R+, X).

Lemma 2.2. Let X be a Banach space, h ∈ L1

loc(R+, X). If limt→∞ ‖h(t)‖ = 0 then

h ∈ P0(R+, X).

Proof. We apply the Theorem 4.1.2 of [2] to the function f(t) := ‖h(t)‖ and obtain the

conclusion of the lemma. �

Lemma 2.3. Let {S(t)}t≥0 ⊂ L(X) be a uniformly integrable and strongly continuous

family. Let g ∈ Λ and set z(t) :=
∫ 0

−∞ S(t− s)g(s) ds. Then z ∈ P0(R+, X).

Proof.

‖z(t)‖ =

∥∥∥∥∫ 0

−∞
S(t− s)g(s) ds

∥∥∥∥ ≤ ∫ 0

−∞
‖S(t−s)‖‖g(s)‖ ds ≤ ‖g‖∞

∫ ∞
t

‖S(s)‖ ds→ 0, (t→∞).

It follows from Lemma 2.2 that z ∈ P0(R+, X). �

Lemma 2.4. Let {S(t)}t≥0 ⊂ L(X) be a uniformly integrable and strongly continuous

family. If h ∈ P0(R+, X) then S ∗ h ∈ P0(R+, X).

Proof. Let h ∈ P0(R+, X). Note that the function defined by ϕT (s) := 1
T

∫ T−s
0
‖h(u)‖ du

is decreasing on R+. Furthermore, ϕT (0) = 1
T

∫ T
0
‖h(u)‖ du→ 0 as T →∞ by hypothesis.
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From Fubini’s Theorem we have that

1
T

∫ T
0
‖(S ∗ h)(t)‖ dt ≤ 1

T

∫ T

0

[∫ t

0

‖S(t− s)‖‖h(s)‖ ds
]
dt

= 1
T

∫ T

0

[∫ T

s

‖S(s)‖‖h(t− s)‖ dt
]
ds

= 1
T

∫ T

0

‖S(s)‖
[∫ T

s

‖h(t− s)‖ dt
]
ds

=

∫ T

0

‖S(s)‖
[

1

T

∫ T−s

0

‖h(u)‖ du
]
ds

=

∫ T

0

‖S(s)‖ϕT (s) ds

≤
∫ T

0

‖S(s)‖(ϕT (0)) ds ≤ ϕT (0)

∫ ∞
0

‖S(s)‖ ds→ 0, (as t→∞).

Hence S ∗ h ∈ P0(R+, X). �

In order to give an operator theoretical approach to equation (1.1) we have the following

definition.

Definition 2.5. ([15]) Let µ ≥ 0 and 0 ≤ α, β ≤ 1 be given. Let A be a closed linear

operator with domain D(A) defined on a Banach space X. We call A the generator

of an (α, β)µ-regularized family if there exist ω ≥ 0 and a strongly continuous function

Sα,β : R+ → B(X) such that {λα+1 + µλβ : Reλ > ω} ⊂ ρ(A) and

H(λ)x := λα(λα+1 + µλβ − A)−1x =

∫ ∞
0

e−λtSα,β(t)xdt, Reλ > ω, x ∈ X.

Because of the uniqueness theorem for the Laplace transform, if µ = 0 and α = 0, this

corresponds to the case of a C0-semigroup whereas the case µ = 0, α = 1 corresponds

to the concept of cosine family. For more details on the Laplace transform approach to

semigroups and cosine functions, we refer to the monograph [2].

Let us recall that a closed and densely defined operator A is said to be ω-sectorial of

angle θ if there exists θ ∈ [0, π/2) and ω ∈ R such that its resolvent exists in the sector
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ω + Sθ := {ω + λ : λ ∈ C, |arg(λ)| < π
2

+ θ} \ {ω}, and

(2.1) ||(λ− A)−1|| ≤ M

|λ− ω|
, λ ∈ ω + Sθ.

These are generators of holomorphic semigroups. In case ω = 0 we merely say that A is

sectorial of angle θ. We should mention that in the general theory of sectorial operators,

it is not required that (2.1) holds in a sector of angle π/2. Our restriction corresponds to

the class of operators used in this paper.

Sufficient conditions to obtain generators of an (α, β)µ-regularized family are given in

the following result.

Theorem 2.6. ([15]) Let 0 < α ≤ β ≤ 1, µ > 0 and A be a ω sectorial operator of angle

βπ/2. Then A generates a bounded (α, β)µ-regularized family.

We next consider the linear fractional differential equation

(2.2) Dα+1
t u(t) + µDβ

t u(t)− Au(t) = Dα
t f(t), t ≥ 0, 0 < α ≤ β ≤ 1, µ ≥ 0,

with initial conditions u(0) = x, u′(0) = y and A is a ω-sectorial operator of angle βπ/2.

Recall that a function u ∈ C1(R+;X) is called a strong solution of (2.2) on R+ if

u(t) ∈ D(A) and (2.2) holds on R+. We have the following result.

If A is ω-sectorial of angle βπ/2 then, by [15, Cor.3.4] and Theorem 2.6, a strong

solution for (2.2) always exists and is given by:

(2.3)

u(t) = Sα,β(t)x+(g1∗Sα,β)(t)y+µ(g1+α−β∗Sα,β(t))x+(Sα,β∗f)(t), 0 < α ≤ β ≤ 1, µ > 0,

where x, y ∈ D(A); f : R+ → D(A) and Sα,β(t) is the (α, β)µ-regularized family generated

by A. If merely x, y ∈ X and f : R+ → X instead of the domain of A, we say that u given

by the formula (2.3) is a mild solution of the linear equation (2.2).
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In order to study the pseudo asymptotic behavior of mild solutions, we need the fol-

lowing result on the integrability of the (α, β)µ-regularized family generated by A.

Theorem 2.7. ([15]) Let 0 < α ≤ β ≤ 1, µ > 0 and ω < 0. Assume that A is an

ω-sectorial operator of angle βπ/2, then A generates an (α, β)µ-regularized family Sα,β(t)

satisfying the estimate

(2.4) ||Sα,β(t)|| ≤ C

1 + |ω|(tα+1 + µtβ)
, t ≥ 0,

for some constant C > 0 depending only on α, β.

3. Pseudo asymptotic solutions: The linear case

LetM(X) ∈ {PPT (R+, X), PAP (R+, X), PAAc(R+, X), PAA(R+, X)}. We can prove

the following theorem which is the main result in this section.

Theorem 3.1. Let 0 < α ≤ β ≤ 1 and µ > 0. Assume that A is an ω-sectorial operator

of angle βπ/2 with ω < 0. Then for each f ∈ M(X) there exists a unique mild solution

u of equation (2.2) such that u ∈M(X).

Proof. Let f ∈ M(X) be given. By Theorem 2.7, A generates a uniformly integrable

(α, β)µ-regularized family Sα,β(t) on the Banach space X, and the unique mild solution

for (2.2) is given by (2.3), that is;

u(t) = Sα,β(t)x+(g1∗Sα,β)(t)y+µ(g1+α−β∗Sα,β(t))x+(Sα,β∗f)(t), 0 < α ≤ β ≤ 1, µ > 0,

where x, y ∈ X. Let Λ ∈ {PT (X), AP (X), AAc(X), AA(X)}. We claim that Sα,β ∗ f ∈

M(X). In fact, for f = g + h where g ∈ Λ and h ∈ P0(R+, X), we have that

(Sα,β ∗ f)(t) =

∫ t

−∞
Sα,β(t− s)g(s)ds−

∫ 0

−∞
Sα,β(t− s)g(s)ds+

∫ t

0

Sα,β(t− s)h(s)ds.
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By [25, Th. 3.3] we conclude that the first term on the right hand side of the above

equality belongs to Λ. On other hand, Lemma 2.3 and Lemma 2.4 imply that the second

and third term on the right hand side belong to P0(R+, X).

Now, note that by (2.4) we have limt→∞ ‖Sα,β(t)‖ = 0. From the Lemma 2.2 we obtain

that Sα,β(t) ∈ P0(R+, X). Hence Sα,β ∈ M(X). We now prove that g1 ∗ Sα,β ∈ M(X).

In fact, by (2.4) we have supt>τ ||tSα,β(t)|| <∞, for each τ > 0. Since A is an ω-sectorial

of angle β π
2

then ||Ŝα,β(λ)|| → 0 as λ→ 0. Thus, by the vector-valued Hardy-Littlewood

theorem (see [2, Theorem 4.2.9]) we conclude that ||(g1 ∗ Sα,β)(t)|| → 0 as t → ∞. The

conclusion follows from Lemma 2.2. It remains only to show that g1+α−β ∗ Sα,β ∈M(X)

for α < β. To see this, we estimate ||g1+α−β ∗ Sα,β(t)|| as follows. Let 0 < ε < β − α be

given, then

||g1+α−β ∗ Sα,β(t)|| = ||Γ(β − α− ε)
∫ t

0

g1+α−β(t− τ)gβ−α−ε(τ)τα−β+ε+1Sα,β(τ)dτ ||

≤ Γ(β − α− ε)
∫ t

0

g1+α−β(t− τ)gβ−α−ε(τ)τα−β+ε+1||Sα,β(τ)||dτ

where, thanks to (2.4), we have that

Γ(β − α− ε)τα−β+ε+1||Sα,β(τ)|| ≤ Mτα−β+ε−1

1 + |ω|τα+1
=

Mτ−β+ε

1
τα+1 + |ω|

, τ > 0.

Since ε < β, there exists a constant C > 0 such that τα−β+ε+1||Sα,β(τ)|| ≤ C. Therefore,

||g1+α−β ∗ Sα,β(t)|| ≤ C

∫ t

0

g1+α−β(t− τ)gβ−α−ε(τ)dτ = Cg1−ε(t) = Ct−ε,

which shows that ‖g1+α−β ∗ Sα,β(t)‖ → 0 as t→∞. By Lemma 2.2 we can conclude that

g1+α−β ∗Sα,β(t) ∈ P0(R+, X). Therefore g1+α−β ∗Sα,β ∈M(X) and finally, we have shown

that u ∈M(X). �

For further use, we state the following immediate corollaries. The first, shows existence

and uniqueness of pseudo almost periodic mild solutions of equation (2.2).
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Corollary 3.2. Let 0 < α ≤ β ≤ 1 and µ > 0. Assume that A is an ω-sectorial operator

of angle βπ/2 with ω < 0. Then for each f ∈ PAP (R+, X) there exists a unique mild

solution u of equation (2.2) such that u ∈ PAP (R+, X).

We next give existence and uniqueness of pseudo almost automorphic mild solutions of

equation (2.2).

Corollary 3.3. Let 0 < α ≤ β ≤ 1 and µ > 0. Assume that A is an ω-sectorial operator

of angle βπ/2 with ω < 0. Then for each f ∈ PAA(R+, X) there exists a unique mild

solution u of equation (2.2) such that u ∈ PAA(R+, X).

4. Pseudo Asymptotic solutions: The semilinear case

Define the Nemytskii superposition operator N (ϕ)(·) := f(·, ϕ(·)) for ϕ ∈ M(X). We

define the set M(R+ × X;X) to consist of all functions f : R+ × X → X such that

f(·, x) ∈ M(X) uniformly for each x ∈ K, where K is any bounded subset of X. From

now on, we also denote

P0(R+×X,X) = {f ∈ BC(R+×X,X) : lim
T→∞

1

T

∫ T

0

||f(t, x)||dt = 0 uniformly on any subset of X}.

In what follows we study existence and uniqueness of solutions in M(X) for the semi-

linear fractional order differential equation

(4.1) Dα+1
t u(t) + µDβ

t u(t)− Au(t) = Dα
t f(t, u(t)), t ≥ 0, 0 < α ≤ β ≤ 1, µ > 0,

where A is an ω-sectorial operator of angle βπ/2 with ω < 0, u(0) = x and u′(0) = y.

In view of the linear case, the following definition of mild solution is natural. Note

that in the borderline case µ = 0 and α = 1 it corresponds to the notion of mild solution

for the semi-linear problem u′′(t) = Au(t) + f(t, u(t)) under the hypothesis that A is the

generator of a cosine family C(t). In fact, in this case: S1,0(t) ≡ C(t) and the associate

sine family is equal to (g1 ∗ S1,0)(t).
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Definition 4.1. Suppose 0 < α ≤ β ≤ 1, µ > 0. A function u : R+ → X is said to be a

mild solution to Equation (4.1) if it satisfies

(4.2) u(t) = Sα,β(t)x+ (g1 ∗Sα,β)(t)y+µ(g1+α−β ∗Sα,β(t))x+

∫ t

0

Sα,β(t− s)f(s, u(s))ds,

for each t ∈ R+ and x, y ∈ X.

We next give a result on existence of mild solutions for the semi-linear problem.

Theorem 4.2. Let 0 < α ≤ β ≤ 1 and µ > 0. Assume that A is an ω-sectorial operator

of angle βπ/2 and ω < 0. Let f : R+ × X → X be a function on M(R+ × X;X) and

assume that there exists a bounded integrable function Lf : R+ → R+ satisfying

(4.3) ||f(t, x)− f(t, y)|| ≤ Lf (t)||x− y||,

for all x, y ∈ X and t ≥ 0. Then Equation (4.1) has a unique mild solution u ∈M(X).

Proof. Let Sα,β(t) be the (α, β)µ-regularized family generated by A (cf. Theorem 2.7).

We define the operator Kα,β on the space M(X) by

(4.4)

(Kα,βu)(t) = Sα,β(t)x+ (g1 ∗Sα,β)(t)y+ µ(g1+α−β ∗Sα,β(t))x+

∫ t

0

Sα,β(t− s)f(s, u(s))ds.

From the proof of Theorem 3.1, we know that Sα,β(t)x + (g1 ∗ Sα,β)(t)y + µ(g1+α−β ∗

Sα,β(t))x ∈ M(X). Moreover by [25, Theorem 4.1] we conclude that the function s →

f(s, u(s)) is in M(X). Then, by hypothesis and in the same way as in the proof of

Theorem 3.1, we arrive at the conclusion that

∫ t

0

Sα,β(t− s)f(s, u(s))ds is also inM(X)
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and thus Kα,β is well defined. Let u, v be in M(X). Observe that

||(Kα,βu)(t)− (Kα,βv)(t)|| ≤
∫ t

0

‖Sα,β(t− s)‖‖f(s, u(s))− f(s, v(s))‖ds

≤
∫ t

0

‖Sα,β(t− s)‖Lf (s)‖u(s)− v(s)‖ds

≤ ‖Sα,β‖1‖u− v‖∞
∫ t

0

Lf (s)ds ≤ ‖Sα,β‖1‖u− v‖∞‖Lf‖1.

By induction, we find the following estimate:

||(Kn
α,βu)(t)− (Kn

α,βv)(t)|| ≤ ||Sα,β||
n
1

(n− 1)!
||u− v||∞

∫ t

0

Lf (s)

(∫ s

0

Lf (τ)dτ

)n−1

ds

=
||Sα,β||n1
n!

||u− v||∞
(∫ t

0

Lf (τ)dτ

)n
≤ ||Sα,β||

n
1

n!
||u− v||∞||Lf ||n1 .

Since
||Sα,β ||n1

n!
||Lf ||n1 < 1 for n sufficiently large, applying the contraction principle we

conclude that F has a unique fixed point u ∈M(X) such that (Kα,βu)(t) = u(t). �

The following corollaries are immediate consequences.

Corollary 4.3. Let 0 < α ≤ β ≤ 1 and µ > 0. Assume that A is an ω-sectorial operator

of angle βπ/2 and ω < 0. Let f : R+ ×X → X be a function on PAP (R+ ×X;X) and

assume that there exists a bounded integrable function Lf : R+ → R+ satisfying (4.3).

Then Equation (4.1) has a unique mild solution u ∈ PAP (R+, X).

Corollary 4.4. Let 0 < α ≤ β ≤ 1 and µ > 0. Assume that A is an ω-sectorial operator

of angle βπ/2 and ω < 0. Let f : R+ ×X → X be a function on PAA(R+ ×X;X) and

assume that there exists a bounded integrable function Lf : R+ → R+ satisfying (4.3).

Then Equation (4.1) has a unique mild solution u ∈ PAA(R+, X).

To finish, we present one example, which do not aim at generality but indicate how our

theorems can be applied to concrete problems.
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Example 4.5. Suppose that b ∈ L1(R+) and b(t)→ 0 as t→∞. Then the equation

(4.5)

Dα+1
t u(x, t)+µDβ

t u(x, t) =
∂2

∂x2
u(x, t)+τu(x, t)+Dα

t [b(t) sin(u(t))], t > 0, 0 < α ≤ β ≤ 1,

where τ < 0 is fixed, with initial and zero boundary conditions has a unique mild solution

u(t, x) which decomposes as a sum of a first part which is almost automorphic (possibly

zero) and a second part that belongs to the space P0(R+ ×X,X).

Indeed, the equation (4.5) is of the form (4.1) with Au = ∂2

∂x2
u + τu and f(t, u) =

b(t) sin(u(t)). Setting the Dirichlet boundary conditions u(0, t) = u(2π, t) = 0 we consider

A with domain D(A) := {u ∈ L2[0, 2π] : u′′ ∈ L2[0, 2π];u(0) = u(2π) = 0} and f(t, x) =

b(t) sin(x). Then it is wellknown that the operator A is ω sectorial with ω = τ < 0 and

angle π/2 (and hence of angle βπ/2 for all β ≤ 1). On the other hand, since b ∈ L1(R+)

and b(t)→ 0 as t→∞, we have

‖f(t, u)− f(t, v)‖2
2 =

∫ π

0

|b(t)|2| sin(u(s))− sin(v(s))|2ds ≤ |b(t)|2‖u− v‖2
2,

and the condition (4.3) holds. Hence the hypothesis of Theorem 4.2 are satisfied and thus

the conclusion of the example follows.
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[31] M. Stojanović and R. Gorenflo. Nonlinear two-term time fractional diffusion-wave problem. Nonlin-

ear Anal. Real World Appl. 11(5) (2010), 3512–3523.

[32] T.J. Xiao, J. Liang and J. Zhang. Pseudo almost automorphic solutions to semilinear differential

equations in Banach spaces. Semigroup Forum76 (3) (2008), 518–524.

[33] C.Y. Zhang. Almost Periodic Type Functions and Ergodicity. Science Press, Kluwer Academic Pub-

lishers, New York, 2003.

[34] C.Y. Zhang. Pseudo almost periodic solutions of some differential equations. J. Math. Anal. Appl.151

(1994), 62–76.

[35] C.Y. Zhang. Pseudo almost periodic solutions of some differential equations II. J. Math. Anal.

Appl.192 (1995), 543–561.



16 EDGARDO ALVAREZ AND CARLOS LIZAMA
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