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WEIGHTED PSEUDO ALMOST AUTOMORPHIC AND
S-ASYMPTOTICALLY ω-PERIODIC SOLUTIONS TO

FRACTIONAL DIFFERENCE-DIFFERENTIAL EQUATIONS

EDGARDO ALVAREZ, CARLOS LIZAMA

Abstract. We study weighted pseudo almost automorphic solutions for the

nonlinear fractional difference equation

∆αu(n) = Au(n+ 1) + f(n, u(n)), n ∈ Z,
for 0 < α ≤ 1, whereA is the generator of an α-resolvent sequence {Sα(n)}n∈N0
in B(X). We prove the existence and uniqueness of a weighted pseudo almost

automorphic solution assuming that f(·, ·) is weighted almost automorphic in

the first variable and satisfies a Lipschitz (local and global) type condition in
the second variable. An analogous result is also proved for S-asymptotically

ω-periodic solutions.

1. Introduction

In this article, we study sufficient conditions for the existence and uniqueness of
discrete weighted pseudo almost automorphic solutions to the semilinear fractional
difference - differential equation

∆αu(n) = Au(n+ 1) + f(n, u(n)), n ∈ Z, (1.1)

where 0 < α ≤ 1, A is a closed linear operator with domain D(A) defined on a
Banach space X which generates an α-resolvent sequence {Sα(n)}n∈N0 ⊂ B(X) and
f : Z×X → X is a discrete weighted pseudo almost automorphic function in k ∈ Z
satisfying suitable Lipschitz type conditions with respect to x ∈ X. The fractional
difference is understood in the sense defined in [1], which is analogous to the Weyl
fractional derivative in the continuous case. See Definition 2.10 below. Difference-
differential equations appear in many practical situations, for instance in traffic
dynamics, theory of probability, theory of chain processes of chemistry, radioactiv-
ity and in biological models, see e.g. [9, 10, 11]. Nonlinear difference equations has
been studied by several authors, see e.g. [5, 8, 14, 18, 19, 23, 24]. First studies on
extensions of the notion of almost automorphic sequences are due to Fink [17]. The
concept of discrete weighted pseudo almost automorphic functions was introducing
by Abbas [2] in 2010 as a further generalization of almost automorphic sequences.
Agarwal et al. [7] obtained almost automorphic solutions to a nonlinear Volterra
difference equation. Ding et al. [16] studied the weighted pseudo almost periodic
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solutions for a class of discrete hematopoiesis model. Xia [29] extended the space
of weighted pseudo almost automorphic sequences with the help of two weights,
proved fundamental properties of this type of functions and apply his results to
Volterra difference equations. Then, Li and Sun proved applications to some semi-
linear difference equations [22]. Abbas et al. defined the concept of Stepanov type
weighted pseudo almost automorphic sequences and proved an important composi-
tion theorem [3]. An interesting application of almost automorphic sequences to a
model of a cellular neural network was shown by Abbas [4]. For a recent application
to discrete delayed neutral systems, see [6]. For other developments, see [12].

Recently, Abadias and Lizama [1] proved the existence and uniqueness of almost
automorphic solutions for (1.1), where A is the generator of a C0-semigroup. There
the authors introduced the concept of fractional difference in the Weyl-like sense
and the notion of α-resolvent sequence.

Our motivation for this article stems from the fact that equations of type (1.1)
can arise in many problems of science and engineering either directly or as part
of a discretization process [20, 21] and that the study of weighted pseudo almost
automorphic solutions for fractional difference-differential equations does not exist
at this time. Since the qualitative behavior of the solutions is crucial in order
to better understand the underlying structure, the existence of weighted pseudo
almost automorphic solutions for such equations seems to be highly important. We
observe that the research on these properties for fractional difference equations is
in its early stages. For some limited results we refer the reader in particular to [23],
[24] and [25].

In this article we prove the following new results: Let 0 < α < 1 and A be the
generator of an exponentially stable C0-semigroup T (t) with growth bound ω0(A).
Suppose that f : Z×X → X can be decomposed as f = g + ϕ where f is discrete
almost automorphic and ϕ is weight mean ergodic. Assume also that f is globally
Lipschitz with constant satisfying the estimate L < 1

ω0(A) . Then, there exists a
unique solution in a mild sense, that can also be decomposed as u = v + ν where
v and ν have the same regularity as g and ϕ, respectively. See Corollary 3.3 for a
precise description of this result. Using the same methods, we obtain an analogous
result on the regularity of solutions for those data f with the property that there
exists an integer number ω such that f(n+ω)−f(n) goes to zero in weighted mean.
Nonlocal versions of this results are also provided. See Theorem 3.4 and Corollary
3.5. In order to prove this kind of results, we introduce a new convolution theorem,
which provides regularity for the linearized version of (1.1). See Theorem 2.13.

This article is organized as follows: Section 2 is devoted to preliminaries, where
we prove a convolution theorem which is new in the context of α-resolvent families
associated with the operator that appears in (1.1). In Section 3 we present our main
results on the existence and uniqueness of weighted pseudo almost automorphic
and S-asymptotically ω-periodic solutions. Finally, in Section 4 we give a concrete
example to illustrate the main findings.

2. Preliminaries

In this section, we give the basic definitions and essential results that we will be
used later. We first introduce the following spaces of sequences.

(i) s(Z, X) is the vector space of all vector valued sequences.
(ii) BS(Z, X) := {f : Z→ X : ‖f‖∞ := supn∈Z ‖f(n)‖ <∞}.
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(iii) lpρ(Z, X) :=
{
f : Z → X : ‖f‖lpρ :=

∑∞
n=−∞ ‖f(n)‖pρ(n) < ∞

}
where

ρ : Z→ (0,∞) is a positive sequence.
(iv) C0(Z, X) := {f ∈ BS(Z, X) : limn→∞ ‖f(n)‖ = 0}.
(v) Cω(Z, X) = {f ∈ BS(Z, X) : f is ω-periodic}.
(vi) UC(Z×X,X) is the set of all functions f : Z×X → X satisfying that for

all ε > 0 there exists δ > 0 such that

‖f(k, x)− f(k, y)‖ ≤ ε

for all k ∈ Z and for all x, y ∈ X with ‖x− y‖ < δ.
Let U be the set of all sequences ρ : Z → (0,∞) which are locally summable

over Z. For a given ρ ∈ U and K ∈ Z+ we denote

md(K, ρ) =
K∑

k=−K

ρ(k).

Define

U∞ = {ρ ∈ U : lim
K→∞

md(K, ρ) =∞},

Ub = {ρ ∈ U∞ : 0 < inf
k∈Z

ρ(k) ≤ sup
k∈Z

ρ(k) <∞}.

We have that Ub ⊂ U∞ ⊂ U .
Let ρ1, ρ2 ∈ U∞. ρ1 is said to be equivalent to ρ2 if ρ1/ρ2 ∈ Ub. In this case we

write ρ1 ∼ ρ2. It can be proved that U∞ = ∪ρ∈U∞{% ∈ U∞ : ρ ∼ %}.
Let ρ ∈ U∞ and m ∈ Z. We define ρm(n) = ρ(n+m) for n ∈ Z and

UT = {ρ ∈ U∞ : ρ ∼ ρm for each m ∈ Z}.

A sequence f : Z→ X is called almost automorphic if for every integer sequence
{k′n}, there exists a subsequence {kn} such that

f̄(k) := lim
n→∞

f(k + kn)

is well defined for each k ∈ Z and limn→∞ f̄(k − kn) = f(k), see [8, Definition 2.1]
and references therein. We denote by AAd(Z, X) the set of almost automorphic
sequences. It is well known that the set AAd(Z, X) endowed with the norm ‖f‖∞ :=
supk∈Z ‖f(k)‖ is a Banach space, see [8, Theorem 2.4]. A typical example is f(k) =
sin
(

1
2+cos(k)+cos(

√
2k)

)
, k ∈ Z. A sequence f : Z × X → X is said to be almost

automorphic if f(k, x) is almost automorphic in k ∈ Z for any x ∈ X. We denote
this space by AAd(Z×X,X).

Let ρ1 ∈ U∞. Define the ergodic space (see [2]) by

PAA0S(Z, X, ρ1) =
{
f ∈ BS(Z, X) : lim

K→∞

1
md(K, ρ1)

K∑
k=−K

‖f(k)‖ρ1(k) = 0
}
.

Particularly, for ρ1, ρ2 ∈ U∞ (see [29]),

PAA0S(Z, X, ρ1, ρ2) =
{
f ∈ BS(Z, X) : lim

K→∞

1
md(K, ρ1)

K∑
k=−K

‖f(k)‖ρ2(k) = 0
}
.

Remark 2.1. Note that if ρ1 ∼ ρ2 then

PAA0S(Z, X, ρ1, ρ2) = PAA0S(Z, X, ρ1) = PAA0S(Z, X, ρ2).



4 E. ALVAREZ, C. LIZAMA EJDE-2016/270

Let ρ1, ρ2 ∈ U∞. A sequence f : Z → X is called discrete weighted pseudo
almost automorphic if it can be expressed as f = g + ϕ, where g ∈ AAd(Z, X)
and ϕ ∈ PAA0S(Z, X, ρ1, ρ2), see [29, Definition 8] and references therein. The
set of such functions is denoted by WPAAd(Z, X). It is well known that the set
WPAAd(Z, X) is a Banach space with the norm ‖f‖∞ = supk∈Z ‖f(k)‖ (see [29,
Lemma 10]). A classical example is the function f(k) = signum(cos 2πkθ) + e−|k|

with ρ1(k) = ρ2(k) = 1 + k2 for k ∈ Z (see [2]).

Remark 2.2. If ρ1 ∼ ρ2, then WPAAd(Z, X) coincide with the discrete weighted
pseudo almost automorphic functions WPAAS(Z) defined in [2].

Similarly, we define (see [29])

PAA0S(Z×X,X, ρ1, ρ2)

=
{
f ∈ BS(Z×X,X) : lim

K→∞

1
md(K, ρ1)

K∑
k=−K

‖f(k, x)‖ρ2(k) = 0

uniform in x ∈ X
}
.

A function f : Z×X → X is said to be discrete weighted pseudo almost automorphic
in k ∈ Z for each x ∈ X, if it can be decomposed as f = g+ϕ, where g ∈ AAd(Z×X)
and ϕ ∈ PAA0S(Z×X,X, ρ1, ρ2). Denote by WPAAd(Z×X,X) the set of such
functions.

Throughout the rest of this paper, we denote by V∞ the set of all functions
ρ1, ρ2 ∈ U∞ satisfying that there exists an unbounded set Ω ⊂ Z such for all
m ∈ Z,

lim
|k|→∞,k∈Ω

sup
ρ2(k +m)
ρ1(k)

<∞,

lim
K→∞

∑
k∈([−K,K]\Ω)+m ρ2(k)

md(K, ρ1)
= 0.

Xia [29] proved the following composition theorem.

Theorem 2.3 ([29, Th. 16]). Assume that ρ1, ρ2 ∈ V∞, and that f ∈WPAAd(Z×
X,X) ∩ UC(Z×X,X) and h ∈WPAAd(Z, X). Then f(·, h(·)) ∈WPAAd(Z, X).

We recall that a function f : Z × X → X is said to be locally Lipschitz with
respect to the second variable if for each positive number r, for all k ∈ Z and for
all x, y ∈ X with ‖x‖ ≤ r and ‖y‖ ≤ r, we have ‖f(k, x)− f(k, y)‖ ≤ L(r)‖x− y‖,
where L : R+ → R+ is a nondecreasing function.

The previous theorem admits a new version with local conditions on the function
f .

Corollary 2.4. Let ρ1, ρ2 ∈ V∞. Let f : Z×X → X be a discrete weighted pseudo
almost automorphic function in the first variable and locally Lipschitz in the second
variable. Then the conclusion of the previous theorem holds.

A function f ∈ BS(Z, X) is called discrete asymptotically ω-periodic if there
exist g ∈ Cω(Z, X), ϕ ∈ C0(Z, X) such that f = g + ϕ. The collection of such
functions is denoted by APω(Z, X). A function f ∈ BS(Z, X) is called discrete
S-asymptotic ω-periodic if there exists ω ∈ Z+ \ {0} such that limn→∞(f(n+ω)−
f(n)) = 0, see [30, Definition 5] and references therein. The collection of such
functions is denoted by SAPω(Z, X).
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Let ρ ∈ U∞. A function f ∈ BS(Z, X) is called discrete pseudo-S-asymptotic
ω-periodic if there exists ω ∈ Z+ \ {0} such that

lim
n→∞

1
2n

n∑
k=−n

‖f(k + ω)− f(k)‖ = 0;

see [30, Definition 6]. The collection of such functions is denoted by PSAPω(Z, X).
Let ρ ∈ U∞. A function f ∈ BS(Z, X) is called discrete weighted pseudo-S-

asymptotic ω-periodic if there exists ω ∈ Z+ \ {0} such that

lim
n→∞

1
md(n, ρ)

n∑
k=−n

‖f(k + ω)− f(k)‖ρ(k) = 0,

see [30, Definition 7]. The set of such functions is denoted by WPSAPω(Z, X, ρ).
It is clear that APω(Z, X) ⊂ PSAPω(Z, X) ⊂ WPSAPω(Z, X, ρ). It is well
known that the set WPSAPω(Z, X, ρ) is a Banach space with the norm ‖f‖∞ :=
supk∈Z ‖f(k)‖ (see [30, Lemma 8]).

Remark 2.5 ([30]). If ρ1, ρ2 ∈ U∞ and ρ1 ∼ ρ2 then

WPSAPω(Z, X, ρ1) = WPSAPω(Z, X, ρ2),

WPSAPω(Z, X, ρ1/ρ2) = PSAPω(Z, X).

Theorem 2.6 ([30, Th. 12]). Assume that ρ ∈ U∞ and that f ∈ WPSAPω(Z ×
X,X, ρ) ∩ UC(Z×X,X) and h ∈WPSAPω(Z, X, ρ). Then

f(·, h(·)) ∈WPSAPω(Z, X, ρ).

Now, we present an alternative version of the preceding theorem with local con-
ditions on f .

Corollary 2.7. Let ρ ∈ U∞. Let f : Z × X → X be a discrete S-asymptotic
ω-periodic function in the first variable and locally Lipschitz in the second variable.
Then, the conclusion of the previous theorem is true.

The following definition of discrete derivative in Weyl sense is due to Abadias
and Lizama [1]. We define the forward Euler operator ∆ : s(Z, X)→ s(Z, X) by

∆f(n) = f(n+ 1)− f(n), n ∈ Z.
Recursively we define

∆k+1 = ∆k∆ = ∆∆k, k ∈ N,
and ∆0 = I is the identity operator. It is easy to see that

∆kf(n) =
k∑
j=0

(−1)k−j
(
k

j

)
f(n+ j).

In particular ∆1 = ∆. In addition, for α > 0, we consider the scalar sequence
{kα(n)}n∈N0 defined by

kα(n) :=
Γ(n+ α)

Γ(α)Γ(n+ 1)
.

We note that the kernel kα satisfies the semigroup property in N0, that is,

(kα ∗ kβ)(n) =
n∑
j=0

kα(n− j)kβ(j) = kα+β(n)
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with n ∈ N0 and α, β > 0.

Definition 2.8. Let α > 0 be given and ρ(n) = |n|α−1, n ∈ Z. The α-th fractional
sum of a sequence f ∈ l1ρ(Z, X) is defined by

∆−αf(n) :=
n∑

j=−∞
kα(n− j)f(j), n ∈ Z.

See also [23] for related work on a slight variant of this definition.

Remark 2.9. The previous definition can be numerically compared with the con-
tinuous fractional integral in the sense of Weyl, see [26, Section 3.3]. Moreover, we
observe that as a consequence of the semigroup property of the kernel kα we have
that ∆−α∆−β = ∆−(α+β) = ∆−β∆−α.

Definition 2.10. Let α > 0 be given and ρ(n) = |n|α−1 for n ∈ Z. The α-th
fractional difference of a sequence f ∈ l1ρ(Z, X) is defined by

∆αf(n) := ∆m∆−(m−α)f(n), n ∈ Z,

with m = [α] + 1.

A sequence {S(n)}n∈N0 ⊂ B(X) is called summable if ‖S‖1 :=
∑∞
n=0 ‖S(n)‖ <

∞. The following definition is introduced in [23].

Definition 2.11. Let α > 0 and A be a closed linear operator with domain D(A)
defined on a Banach space X. An operator-valued sequence {Sα(n)}n∈N0 ⊂ B(X)
is called a discrete α-resolvent family generated by A if it satisfies the following
conditions

(i) Sα(n)Ax = ASα(n)x for n ∈ N0 and x ∈ D(A);
(ii) Sα(n)x = kα(n)x+A(kα ∗ Sα)(n)x, for all n ∈ N0 and x ∈ X.

We recall the following practical criteria for summability of α-resolvent families.

Theorem 2.12 ([1, Th. 3.5]). Let 0 < α < 1 and A be the generator of an
exponentially stable C0-semigroup {T (t)}t≥0 defined on a Banach space X. Then
A generates a discrete α-resolvent family {Sα(n)}n∈N0 defined by

Sα(n)x :=
∫ ∞

0

∫ ∞
0

e−t
tn

n!
fs,α(t)T (s)x ds dt, n ∈ N0, x ∈ X. (2.1)

Moreover, {Sα(n)}n∈N0 is summable. (Here fs,α(t) is the function called stable
Lévy process, see [1]).

Let M(Z, X) := {WPAAd(Z, X),WPSAPω(Z, X, ρ)} and M(Z × X,X) :=
{WPAAd(Z×X,X),WPSAPω(Z×X,X, ρ)}. The following is our main result on
regularity under convolution of the above mentioned spaces.

Theorem 2.13. Let 0 < α < 1, ρ1, ρ2 ∈ V∞ and ρ ∈ UT . Assume that A generates
a summable discrete α-resolvent family {Sα(n)}n∈N0 ⊂ B(X). If f belongs to one
of the spaces Ω ∈M(Z, X) then

u(n) =
n−1∑
j=−∞

Sα(n− 1− j)f(j) (n ∈ Z)

belongs to the same space Ω.
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Proof. First note that u is well defined since ‖u(n)‖ ≤ ‖Sα‖1‖f‖∞, for all n ∈ Z.
First, we consider f ∈WPAAd(Z, X). Let u = f1 +f2, where f1 ∈ AAd(Z, X) and
f2 ∈ PAA0S(Z, X, ρ1, ρ2). Then

u(n) =
n−1∑
j=−∞

Sα(n− 1− j)f1(j) +
n−1∑
j=−∞

Sα(n− 1− j)f2(j) =: u1(n) + u2(n).

It follows from [1, Theorem 4.5] that u1 ∈ AAd(Z, X). It remains to prove that
u2 ∈ PAA0S(Z, X, ρ1, ρ2). Indeed,

1
md(K, ρ1)

K∑
k=−K

‖u2(k)‖ρ2(k)

=
1

md(K, ρ1)

K∑
k=−K

∥∥ k−1∑
j=−∞

Sα(k − 1− j)f2(j)
∥∥ρ2(k)

≤
∞∑
m=0

‖Sα(m)‖
( 1
md(K, ρ1)

K∑
k=−K

‖f2(k − 1−m)‖ρ2(k)
)
.

Since PAA0S(Z, X, ρ1, ρ2) is invariant under translation by [29, Lemma 10] we
obtain that f2(·−m) ∈ PAA0S(Z, X, ρ1, ρ2). By Lebesgue dominated convergence
theorem, we have

lim
K→∞

1
md(K, ρ1)

K∑
−K
‖u2(k)‖ρ2(k) = 0.

Hence u ∈ WPAAd(Z, X). It proves the claim for such space. Now, let f ∈
WPSAPω(Z, X, ρ). Then,

1
md(K, ρ)

K∑
k=−K

‖u(k + ω)− u(k)‖ρ(k)

=
1

md(K, ρ)

K∑
k=−K

∥∥∥∥ k+ω−1∑
j=−∞

Sα(k + ω − 1− j)f(j)

−
k−1∑
j=−∞

Sα(k − 1− j)f(j)
∥∥∥∥ρ(k)

≤ 1
md(K, ρ)

K∑
k=−K

k−1∑
j=−∞

‖Sα(k − 1− j)‖‖f(j + ω)− f(j)‖ρ(k)

≤
∞∑
m=0

‖Sα(m)‖
( 1
md(K, ρ)

K∑
k=−K

‖f(k − 1−m+ ω)− f(k − 1−m)‖ρ(k)
)
.

Since WPSAPω(Z, X, ρ) is invariant under translation by [30, Lemma 10] we obtain
that f(· − 1 − m) ∈ WPSAPω(Z, X, ρ). By Lebesgue dominated convergence
theorem, we have

lim
K→∞

1
md(K, ρ)

K∑
−K
‖u(k + ω)− u(k)‖ρ(k) = 0.

Hence u ∈WPSAPω(Z, X, ρ). The proof is complete. �
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3. Solutions for nonlinear fractional difference equations

We consider the fractional difference equation

∆αu(n) = Au(n+ 1) + f(n, u(n)), n ∈ Z, (3.1)

for 0 < α < 1, where A is the generator of a discrete α-resolvent family {Sα(n)}n∈N0

in B(X), and ∆α is the fractional difference of the sequence u of order α.
Since our objective is to study the solubility of (3.1) in the spaces M(Z, X),

where the forcing term f is only bounded, we need to use the definition of mild
solution introduced by Abadias and Lizama in [1].

Definition 3.1. Let 0 < α < 1, A be the generator of a discrete α-resolvent family
{Sα(n)}n∈N0 ⊂ B(X), and f : Z×X → X. We say that a sequence u : Z→ X is a
mild solution of (3.1) if m → Sα(m)f(n −m) is summable on N0, for each n ∈ Z
and u satisfies

u(n+ 1) =
n∑

j=−∞
Sα(n− j)f(j, u(j)), n ∈ Z.

Our first result in this section provides a simple criterion for the existence
and uniqueness of discrete weighted pseudo almost automorphic and discrete S-
asymptotic ω-periodic mild solutions. The proof is based on the Banach fixed
point theorem.

Theorem 3.2. Let 0 < α < 1, ρ1, ρ2 ∈ V∞ and ρ ∈ UT . Assume that A generates
a summable discrete α-resolvent family {Sα(n)}n∈N0 ⊂ B(X). If f ∈ Ω ∈ M(Z ×
X,X) and it is globally Lipschitz in the following sense:

‖f(n, x)− f(n, y)‖ ≤ L‖x− y‖, for all n ∈ Z and all x, y ∈ X,
where L < 1

‖Sα‖1 , then (3.1) has a unique mild solution u which belongs to the
corresponding subset Ω ∈M(Z, X).

Proof. Let f ∈WPAAd(Z×X,X) and consider the operator T : WPAAd(Z, X)→
WPAAd(Z, X) defined by

(Tu)(n) :=
n−1∑
j=−∞

Sα(n− 1− j)f(j, u(j)), n ∈ Z. (3.2)

Since u ∈ WPAAd(Z, X) it follows from Theorem 2.3 that f(·, u(·)) belongs to
WPAAd(Z, X). Now, from Theorem 2.13 we have that Tu ∈ WPAAd(Z, X).
Hence T is well-defined. In addition, for u, v ∈ WPAAd(Z, X) and n ∈ Z the
following inequality holds,

‖(Tu)(n)− (Tv)(n)‖ ≤
n−1∑
j=−∞

‖Sα(n− 1− j)(f(j, u(j))− f(j, v(j)))‖

≤
n−1∑
j=−∞

‖Sα(n− 1− j)‖‖u(j)− v(j)‖

≤ L‖Sα‖1‖u− v‖∞.
By hypothesis we conclude that T is a contraction, and using Banach fixed

point theorem we get that there exists a unique discrete weighted pseudo almost
automorphic mild solution of (3.1) .
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The proof for the space of S-asymptotic ω-periodic sequences is analogous. �

Using [1, Remark 3.6] we have a precise estimate for ‖Sα‖1 that can be used
to prove the following Corollary. The proof use Theorem 2.12 and the proof of
Theorem 3.2.

Corollary 3.3. Let 0 < α < 1, ρ1, ρ2 ∈ V∞, ρ ∈ UT and A be the generator of
a C0-semigroup T (t) such that ‖T (t)‖ ≤ Me−ωt, for some M > 0 and ω > 0. If
f ∈ M(Z × X,X) is globally Lipschitz with constant L < 1/ω then (3.1) has a
unique mild solution u which belongs to the same space as f .

Next, we show that the conclusion of the previous theorem holds with a local
Lipschitz condition on f .

Theorem 3.4. Let 0 < α < 1, ρ1, ρ2 ∈ V∞ and ρ ∈ UT . Assume that A generates a
summable discrete α-resolvent family {Sα(n)}n∈N0 ⊂ B(X). Let f ∈M(Z×X,X)
that satisfies a local Lipschitz condition. If there exist r0 > 0 such that

‖Sα‖1
(
L(r0) +

supk ‖f(k, 0)‖
r0

)
< 1,

then (3.1) has a unique mild solution u which belongs to the same space as f with
‖u‖∞ := supk ‖u(k)‖ ≤ r0.

Proof. First, we consider f ∈WPAAd(Z×X,X). Note that T : WPAAd(Z, X)→
WPAAd(Z, X) given by (3.2) is well defined by Corollary 2.4 and Theorem 2.13.

Let Br0(0) := {u ∈ WPAAd(Z, X) : ‖u‖∞ < r0} be the ball of radius r0 on
WPAAd(Z, X). We show that T

(
Br0(0)

)
⊂ Br0(0). Indeed, let u be in Br0(0).

Since f is locally Lipschitz, we obtain

‖f(k, u(k))‖ ≤ ‖f(k, u(k))− f(k, 0)‖+ ‖f(k, 0)‖ ≤ L(r0)‖u(k)‖+ ‖f(k, 0)‖,

for k ∈ Z. Moreover, we have the estimate

‖T (u)(n)‖

≤
n−1∑
j=−∞

‖Sα(n− 1− j)‖‖f(j, u(j))− f(j, 0)‖+
n−1∑
j=−∞

‖Sα(n− 1− j)‖‖f(j, 0)‖

≤ L(r0)
n−1∑
j=−∞

‖Sα(n− 1− j)‖‖u(j)‖+ ‖Sα‖1 sup
k
‖f(k, 0)‖

≤ ‖Sα‖1
(
L(r0) +

supk ‖f(k, 0)‖
r0

)
r0 ≤ r0,

proving the claim. On the other hand, for u, v ∈ Br0(0) we have that

‖Tu(n)− Tv(n)‖

≤
n−1∑
j=−∞

‖Sα(n− 1− j)‖‖f(j, u(j))− f(j, v(j))‖

≤ L(r0)
n−1∑
j=−∞

‖Sα(n− 1− j)‖‖u(j)− v(j)‖

≤ ‖Sα‖1L(r0)‖u− v‖∞.



10 E. ALVAREZ, C. LIZAMA EJDE-2016/270

Observing that ‖Sα‖1L(r0) < 1, it follows that T is a contraction in Br0(0). Then
there is a unique u ∈ Br0(0) such that Tu = u.

The proof for f ∈ WPSAPω(Z × X,X, ρ) is similar, we just have to take
Br0(0) := {u ∈ WPSAPω(Z, X, ρ) : ‖u‖∞ < r0} be the ball of radius r0 on
WPSAPω(Z, X, ρ). �

The following corollary is an immediate consequence of the previous results.

Corollary 3.5. Let 0 < α < 1, ρ1, ρ2 ∈ U∞, ρ ∈ UT and A be the generator of
a C0-semigroup T (t) such that ‖T (t)‖ ≤ Me−ωt, for some M > 0 and ω > 0. If
f ∈M(Z×X,X) is locally Lipschitz and satisfy

1
ω

(
L(r0) +

supk ‖f(k, 0)‖
r0

)
< 1,

for some r0 > 0, then (3.1) has a unique mild solution u which belongs to the same
space as f .

We finish this article with a simple example to illustrate how our abstract results
apply.

Example 3.6. We consider the fractional difference equation

∆αu(k) = Au(k + 1) +
νg(k)u(k)

1 + supk |u(k)|
, k ∈ Z, (3.3)

where 0 < α < 1 act as a tuning parameter for the difference Equation (3.3), the
operator A is the generator of an exponentially stable C0-semigroup on a Banach
space X, ν is a parameter and g(k) = signum(cos 2πkθ) + e−|k|. We know by [2]
that g ∈WPAAd(Z, X) where ρ = 1 + k2. Now, it can be shown that the function

f(k, x) :=
νg(k)x

1 + ‖x‖∞
, k ∈ Z, x ∈ X,

is a discrete weighted pseudo almost automorphic function on Z×X. We have the
estimate

‖f(k, x)− f(k, y)‖∞ ≤ ν‖g‖∞(1 + ‖y‖)‖x− y‖∞.
Therefore, we can choose L(r) = ν‖g‖∞(1 + r), r > 0, to deduce that f(k, x)

is locally Lipschitz. Since f(k, 0) = 0, we obtain that for sufficiently small ν the
condition ‖Sα‖1L(r) < 1 is satisfied. We conclude, by Theorem 3.4, that the frac-
tional model (3.3) admits a unique discrete weighted pseudo almost automorphic
solution.
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