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Abstract. In this paper we prove the existence of weighted pseudo antiperiodic mild
solutions for fractional integro-differential equations in the form

Dα(t) = Au(t) +

∫ t

−∞
a(t− s)Au(s) ds+ f(t, u(t)),

where f(·, u(·)) is Stepanov weighted pseudo antiperiodic and A generates a resolvent
family of bounded and linear operators on a Banach space X, a ∈ L1

loc(R+) and α > 0.
Also, we give a short proof to show that the vector-valued space of Stepanov-like weighted
pseudo antiperiodic functions is a Banach space.

1. Introduction

Let us consider the equation

(1.1) L(u) = f,

where L is a linear, possibly unbounded operator, and the forcing term f belongs to some
space of vector-valued functions, sayM. It is well known that mathematical understand-
ing of the linear Equation (1.1) is meant as a preliminary critical step for the subsequent
analysis of full nonlinear models. Usually, one is interested in to find conditions on the
operator L such that the solution u belongs to the same space of vector-valued functions
than f . Then, fixed point arguments are used to obtain the desired solution of associated
nonlinear problems.

We ask ourselves the following: (Q) Can the solution u be more regular that f?. In
other words, is it possible to find a subspace N ⊂M such that u ∈ N ?.

This problem has begun to be studied in the last years and there are some cases in the
literature where the answer is positive. For instance, Diagana, N’Guérékata and Mophou
[8] solved the problem (Q) takingM as the space of Stepanov-like weighted pseudo almost
automorphic functions, L(u) := Dα

t u − Au and N as the subspace of weighted pseudo
almost automorphic functions. Here A is a closed and linear operator defined on a Banach
space X and Dα denotes fractional derivative of order α > 0. A further generalization
when the forcing term f also depends on a given operator was studied recenty by Mishra
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and Bahuguna [12]. Previously, Diagana [6] studied the case α = 1 with M the space of
Stepanov-like pseudo almost automorphic functions and N the subspace of pseudo almost
automorphic functions. The nonautonomous case, that is L(u) = u′ − A(t)u, was very
recently studied by Xia [17, Theorem 42]. He consider M as the space of Stepanov-like
weighted pseudo periodic functions and N as the subspace of weighted pseudo periodic
functions. We also note that Xia and Fan [18] have solved problem (Q) for some interesting
classes of partial neutral functional differential equations, nonlinear Volterra equations of
scalar type and semilinear equations with delay.

In this paper, we are able to give an affirmative answer to (Q) takingM as the space of
Stepanov-like weighted pseudo antiperiodic functions; N as the space of weighted pseudo
antiperiodic functions and the class of operators is defined by

(1.2) L(u)(t) = Dαu(t)− Au(t)−
∫ t

−∞
a(t− s)Au(s) ds,

where A generates a resolvent family {Sα(t)}t≥0 on Banach space X, a ∈ L1
loc(R+) and

α > 0. Equation (1.1) with L defined by (1.2) has been in studied in [15]. The study
of existence of solutions to such class of fractional differential equations is an important
topic due to its significance and applications in physics, probability, modelling, mechanics
and other areas. However, to the best of our knowledge, the existence of weighted pseudo
antiperiodic solutions to (1.2) in the case when the forcing term f is Stepanov weighted
pseudo antiperiodic is an untreated original problem, which constitutes one of the main
motivations of this work.

Parallell to this, we note that the existence and uniqueness of antiperiodic solutions to
evolution equations is an important topic that have been studied in several works. We
mention here Aftabizadeh, Aizicivici and Pavel [1], [2], Al-Islam, Alsulami and Diagana
[3], H.L.Chen [4], Y.Q. Chen [5], Haraux [9], Okoshi [14], and N’Guérékata and Valmorin
[13].

This paper is organized as follows. In Section 2, we first present some definitions and
basic results of Stepanov-like type spaces and then we give a short and direct proof to the
fact that the space of Stepanov-like weighted pseudo antiperiodic functions is a Banach
space (Theorem 2.15). In Section 3, we first prove a composition Theorem in the space of
Stepanov-like weighted pseudo antiperiodic functions, assuming a compactness condition
(Theorem 3.3). Then, we show sufficient conditions in order to ensure the existence
and uniqueness of weighted weighted antiperiodic mild solutions where the input data f
belongs to the space of Stepanov-like weighted pseudo antiperiodic functions. We finish
this paper with an illustrative example to find existence and uniqueness of mild solutions
for a concrete semilinear problem is given.

2. Preliminaries

In this section, we introduce some basic definitions, notations and preliminaries facts
that we will use in the paper. Particularly, we give an alternative proof to show that the
space of Stepanov-like weighted pseudo antiperiodic functions is a Banach space.
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Throughout the paper (X, ‖·‖X) and (Y, ‖·‖Y ) are complex Banach spaces and B(X, Y )
is the Banach space of bounded linear operators from X to Y ; when X = Y we simply
write B(X).

We denote by

BC(R, X) := {f : R→ X : f is continuous, ||f ||∞ := sup
t∈R
||f(t)|| <∞},

the Banach space of X-valued bounded and continuous functions on R, with natural norm.
Given a function g : R→ X, the Caputo (or Weyl) fractional integral of order α > 0 is

defined by

D−αg(t) :=
1

Γ(α)

∫ t

−∞
(t− s)α−1g(s)ds, t ∈ R,

when this integral is convergent. The Caputo (or Weyl) fractional derivative Dαg of order
α > 0 is defined by

Dαg(t) :=
dn

dtn
D−(n−α)g(t), t ∈ R,

where n = [α] + 1. It is known that DαD−αg = g for any α > 0, and Dn = dn

dtn
holds with

n ∈ N. See [11] for more details.
The Mittag-Leffler function (see e.g. [10]) is defined as follows:

Eα,β(z) :=
∞∑
k=0

zk

Γ(αk + β)
=

1

2πi

∫
Ha

eµ
µα−β

µα − z
dµ, α, β > 0, z ∈ C,

where Ha is a Hankel path, i.e. a contour which starts and ends at −∞ and encircles the
disc |µ| ≤ |z|1/α counterclockwise. The Laplace transform of a variant of the Mittag-Leffler
function is given by:

L(tβ−1Eα,β(−ρtα))(λ) =
λα−β

λα + ρ
, ρ ∈ C,Reλ > |ρ|1/α.

We recall the following definition [15] (see also [16] for a general treatment on resolvent
families).

Definition 2.1. Let A be a closed and linear operator with domain D(A) defined on a
Banach space X, and α > 0. Given a ∈ L1

loc(R+), we say that A is the generator of an
α-resolvent family, if there exist ω ≥ 0 and a strongly continuous function Sα : [0,∞)→
B(X) such that { λα

1+â(λ)
: Reλ > ω} ⊂ ρ(A), the resolvent set of A, and for all x ∈ X,

(
λα − (1 + â(λ))A

)−1
x =

1

1 + â(λ)

(
λα

1 + â(λ)
− A

)−1
x =

∫ ∞
0

e−λtSα(t)xdt, Reλ > ω.

In this case, {Sα(t)}t≥0 is called the α-resolvent family generated by A.

Now, we recall the definitions of antiperiodic functions.

Definition 2.2. A function f ∈ C(R, X) is said to be antiperiodic if there exists a
ω ∈ R \ {0} with the property f(t + ω) = −f(t) for all t ∈ R. If there exists a least
positive ω with this property, it is called the anti-period of f . The collection of those
functions with the same anti-period ω is denoted by Pωap(R, X).
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Remark 2.3. Note that if f ∈ Pωap(R, X), then f ∈ P2ω(R, X), where P2ω(R, X) denotes
the Banach space of all 2ω-periodic functions.

Definition 2.4. A function f ∈ C(R × X,X) (resp., C(R × X × X,X)) is said to be
antiperiodic in t ∈ R and uniformly in u ∈ X (resp. in (u, v) ∈ X × X) if there exists
a ω ∈ R \ {0} with the property f(t + ω, u) = −f(t, u) for all t ∈ R, u ∈ X. (resp.
f(t + ω, u, v) = −f(t, u, v) for all t ∈ R, (u, v) ∈ X × X). The collection of those
ω-antiperiodic functions is denoted by Pωap(R×X,X) (resp., Pωap(R×X ×X,X)).

Let U be denote the set of all functions ρ : R → (0,∞) in L1
loc(R) such that ρ(t) > 0

for all t ∈ R a.e. For a given r > 0 and for each ρ ∈ U , we set

m(r, ρ) :=

∫ r

−r
ρ(t) dt.

Thus the space of weights U∞ is defined by

U∞ := {ρ ∈ U : lim
r→∞

m(r, ρ) =∞}.

Now, for ρ ∈ U∞, we define

PAA0(R, X) := {f ∈ BC(R, X) : lim
r→∞

1

m(r, ρ)

∫ r

−r
‖f(t)‖ρ(t) dt = 0};

PAA0(R× Y,X) := {f ∈ BC(R× Y,X) : f(·, y) is bounded for each y ∈ Y

and lim
r→∞

1

m(r, ρ)

∫ r

−r
‖f(t, y)‖ρ(t) dt = 0, uniformly in y ∈ Y }.

Definition 2.5 ([7]). Let ρ ∈ U∞. A function f ∈ BC(R, X) (respectively f ∈ BC(R×
Y,X)) is called weighted pseudo antiperiodic if it can be expressed as f = g+h where g ∈
Pωap(R, X) (respectively Pωap(R × Y,X)) and h ∈ PAA0(R, X) (respectively PAA0(R ×
Y,X)). We denote by WPPωap(R, X) (respectively WPPωap(R×Y,X)) the set of all such
functions.

Definition 2.6 ([8]). The Bochner transform f b(t, s) with t ∈ R, s ∈ [0, 1] of a function
f : R→ X is defined by

f b(t, s) := f(t+ s).

Definition 2.7 ([8]). The Bochner transform f b(t, s, u) with t ∈ R, s ∈ [0, 1], u ∈ X of a
function f : R×X → X is defined by

f b(t, s, u) := f(t+ s, u) for all u ∈ X.

Definition 2.8 ([8]). Let p ∈ [1,∞). The space BSp(R, X) of all Stepanov bounded
functions, with exponent p, consist of all measurable functions f : R → X such that
f b ∈ L∞(R, Lp(0, 1;X)). This is a Banach space with the norm

‖f‖Sp := ‖f b‖L∞(R,Lp) = sup
t∈R

(∫ t+1

t

‖f(τ)‖p dτ
) 1

p

.

Definition 2.9. A function f ∈ BSp(R, X) is called Stepanov antiperiodic if f b ∈
Pωap(R, Lp(0, 1;X)). We denote the set of all such functions by PωapS

p(R, X).
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Remark 2.10. We note that the preceding definition implies

sup
t∈R

(∫ t+1

t

‖f(s+ ω) + f(s)‖p ds
)1/p

= 0

which is equivalent to say that f(t+ω) = −f(t) a.e. t ∈ R; that is; ‖f(t+ω)+f(t)‖p = 0.
We observe that this coincide with the definition of Xia in [17].

Definition 2.11. A function f : R×X → Y with f(·, u) ∈ BSp(R, Y ), for each u ∈ X, is
called Stepanov antiperiodic function in t ∈ R uniformly for u ∈ X if f(t+ω, u) = −f(t, u)
a.e. t ∈ R and each u ∈ X. We denote by PωapS

p(R×X, Y ) the set of all such functions.

Now, we introduce a (natural) linear operator from BSp(R, X) into L∞(R, Lp(0, 1;X))
which will be an important tool in order to clarity some concepts and achieve our goals.

Definition 2.12. We define the map

B :BSp(R, X)→ L∞(R, Lp(0, 1;X))

f 7→ (Bf)(t)(s) = f(t+ s).

Remark 2.13. It follows from the definitions that the operator B is a linear isometry
between BSp(R, X) and L∞(R, Lp(0, 1;X)). More precisely

‖Bf‖∞ = ‖f‖BSp(R,X).

Remark 2.14. The definition of Stepanov-like weighted pseudo antiperiodic functions
given by Xia in [17] can be rewritten using the preceding notation. Thus, for ρ ∈ U∞, we
say that a function f is Stepanov-like weighted pseudo antiperiodic (or Sp−weighted pseudo
antiperiodic) if and only if f ∈ B−1(Pωap(R, Lp(0, 1;X))) + B−1(PAA0(R, Lp(0, 1;X))),
where by notation B−1(M) := {f ∈ BSp(R, X) : B(f) = g for some g ∈ M} for M ⊆
L∞(R, Lp(0, 1;X)) In other words,

(2.1) WPPωapS
p(R, X) = B−1(Pωap(R, Lp(0, 1;X))) + B−1(PAA0(R, Lp(0, 1;X)))

Moreover, since B is an isometry and Pωap(R, Lp(0, 1;X)) ∩ PAA0(R, Lp(0, 1;X)) = {0}
then the sum in (2.1) is direct, that is,

WPPωapS
p(R, X) = B−1(Pωap(R, Lp(0, 1;X)))⊕ B−1(PAA0(R, Lp(0, 1;X))).

Based in the definition of operator B, we prove that WPPωapS
p(R, X) is a Banach

space when endowed with their natural norm.

Theorem 2.15. WPPωapS
p(R, X) is a Banach space with the norm

‖f‖WPPωapSp(R,X) := ‖g‖BSp(R,X) + ‖h‖BSp(R,X)

where f = g + h with g ∈ B−1(Pωap(R, Lp(0, 1;X))) and h ∈ B−1(PAA0(R, Lp(0, 1;X))).

Proof. Let (fn) be a Cauchy sequence inWPPωapS
p(R, X). Then ‖fn−fm‖WPPωapSp(R,X) →

0 as n,m→∞. Let fn = gn+hn and fm = gm+hm with gn, gm ∈ B−1(Pωap(R, Lp(0, 1;X)))
and hn, hm ∈ B−1(PAA0(R, Lp(0, 1;X))). If n,m→∞, then

‖Bgn − Bgm‖L∞(R,Lp) = ‖gn − gm‖BSp(R,X) ≤ ‖fn − fm‖WPPωapSp(R,X) → 0
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and

‖Bgn − Bgm‖L∞(R,Lp) = ‖gn − gm‖BSp(R,X) ≤ ‖fn − fm‖WPPωapSp(R,X) → 0.

This implies that (Bgn) and (Bhn) are Cauchy sequences in Pωap(R, Lp(0, 1;X)) and
PAA0(R, Lp(0, 1;X)) respectively. Since Pωap(R, Lp(0, 1;X)) and PAA0(R, Lp(0, 1;X))
are Banach spaces (see [13] and [?] resp.) then there exist g ∈ Pωap(R, Lp(0, 1;X)) and
h ∈ PAA0(R, Lp(0, 1;X)) such that

‖Bgn − g‖L∞(R,Lp) → 0, ‖Bhn − h‖L∞(R,Lp) → 0 (n→∞).

Let f1 := B−1({g}) ∈ B−1(Pωap(R, Lp(0, 1;X))) and f2 := B−1({h}) ∈ B−1(PAA0(R, Lp(0, 1;X))).
Note that f1 and f2 are uniquely defined because B is injective. Let f := f1 + f2 ∈
WPPωapS

p(R, X). Then

‖fn − f‖WPPωapSp(R,X) = ‖(gn + hn)− (f1 + f2)‖WPPωapSp(R,X)

= ‖gn − f1‖BSp(R,X) + ‖hn − f2‖BSp(R,X)

= ‖Bgn − Bf1‖L∞(R,Lp) + ‖Bhn − Bf2‖L∞(R,Lp)

= ‖Bgn − g‖L∞(R,Lp) + ‖Bhn − h‖L∞(R,Lp) → 0 (n→∞).

Therefore WPPωapS
p(R, X) is a Banach space. �

Theorem 2.16. Let ρ ∈ U∞ be given and let S : R+ → B(X) be strongly continuous.
Suppose that there exist a function φ ∈ L1(R+) such that

(a) ‖S(t)‖ ≤ φ(t) t ≥ 0;
(b) φ(t) is increasing;
(c)

∑∞
n=0 φ(n) <∞.

Suppose that f ∈ WPPωapS
p(R, X). Then

(S ∗ f)(t) :=

∫ t

−∞
S(t− s)f(s) ds ∈ WPPωap(R, X).

Proof. See [17, Lemma 36]. �

3. Weighted pseudo antiperiodic mild solutions

In this section we consider the problem of existence and uniqueness of weighted pseudo
antiperiodic mild solutions for the following class of integro-differential equations

(3.1) Dαu(t) = Au(t) +

∫ t

−∞
a(t− s)Au(s) ds+ f(t, u(t)),

where A generates an α-resolvent family {Sα(t)}t≥0 on a Banach space X, a ∈ L1
loc(R+),

α > 0 and the fractional derivative is understood in the sense of Caputo. Note that
Equation (3.1) has the form of Equation (1.1) with Lu = Dαu(t) − Au(t) −

∫ t
−∞ a(t −

s)Au(s) ds.
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Definition 3.1. A function u : R→ X is said to be a mild solution of (3.1) if

u(t) =

∫ t

−∞
Sα(t− s)f(s, u(s)) ds (t ∈ R)

where {Sα(t)}t≥0 is the α-resolvent family generated by A, whenever it exists.

Now, we present the following composition theorems.

Theorem 3.2. Assume that F : R×X → X is a bounded function that satisfies

(a) There exists ω > 0 such that F (t + ω,−x) = −F (t, x) for a.e. t ∈ R and for all
x ∈ X;

(b) There exists L > 0 such that ‖F (t, x)− F (t, y)‖ ≤ L‖x− y‖ for all x, y ∈ X and
t ∈ R;

(c) u ∈ PωapSp(R, X).

Then F (·, u(·)) ∈ PωapSp(R, X).

Proof. Since ‖F (t, x)−F (t, y)‖ ≤ L‖x−y‖ implies ‖F (t, x)−F (t, y)‖p ≤ L‖x−y‖p, then

‖F (t+ ω, u(t+ ω)) + F (t, u(t))‖p = ‖F (t+ ω, u(t+ ω))− F (t+ ω,−u(t))‖p
+ ‖F (t+ ω,−u(t)) + F (t, u(t))‖p
≤ L‖u(t+ ω) + u(t)‖p
+ ‖F (t+ ω,−u(t)) + F (t, u(t))‖p = 0.

Therefore F (t + ω, u(t + ω)) = −F (t, u(t)) a.e. t ∈ R and consequently F (·, u(·)) ∈
Pωap(R, X). �

Our next result assume a compactness condition in order to obtain invariance under
composition of functions for the space of Stepanov weighted pseudo antiperiodic functions.

Theorem 3.3. Let ρ ∈ U∞, p > 1, f = g + φ ∈ WPPωapS
p(R × X,X) with g ∈

B−1(Pωap(R×X,Lp(0, 1;X))) and φ ∈ B−1(PAA0(R×X,Lp(0, 1;X))). Assume that

(i) There exists ω > 0 such that f(t+ ω,−x) = −f(t, x).
(ii) There exist constants Lf , Lg > 0 such that

‖f(t, u)− f(t, v)‖ ≤ Lf‖u− v‖, ‖g(t, u)− g(t, v)‖ ≤ Lg‖u− v‖ t ∈ R, u, v ∈ X.
(iii) h = α + β ∈ WPPωapS

p(R, X) with α ∈ B−1(Pωap(R, Lp(0, 1;X))) and β ∈
B−1(PAA0(R, Lp(0, 1;X))) is such that the set

K := {α(t) : t ∈ R}
is compact in X. Then f(·, h(·)) ∈ WPPωapS

p(R, X).

Proof. We can decompose

f(t, h(t)) = g(t, α(t)) + f(t, h(t))− f(t, α(t)) + φ(t, α(t)).

Set
F (t) := g(t, α(t)), G(t) := f(t, h(t))− f(t, α(t)), H(t) := φ(t, α(t)).

Since α ∈ PωapSp(R, X) and g ∈ PωapSp(R × X,X) then by assumptions and Theorem
3.2 we obtain that F (t) ∈ B−1(Pωap(R, Lp(0, 1;X))).
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Next we show that G(t) ∈ B−1(PAA0(R, Lp(0, 1;X))). Indeed

∫ t+1

t

‖G(σ)‖p dσ =

∫ t+1

t

‖f(σ, h(σ))− f(σ, α(σ))‖p dσ

≤
∫ t+1

t

Lpf‖h(σ)− α(σ)‖p dσ

=

∫ t+1

t

Lpf‖β(σ)‖p dσ.

Then

1

m(r, ρ)

∫ r

−r

(∫ t+1

t

ρ(t)‖G(σ)‖p dσ
)1/p

dt ≤ Lf
m(r, ρ)

∫ r

−r
ρ(t)

(∫ t+1

t

‖β(σ)‖p dσ
)1/p

dt.

Since β(·) ∈ B−1(PAA0(R, Lp(0, 1;X))) we obtain thatG(·) ∈ B−1(PAA0(R, Lp(0, 1;X))).
Next, we prove that H(·) ∈ B−1(PAA0(R, Lp(0, 1;X))). Since φ ∈ B−1(PAA0(R ×

X,Lp(0, 1;X))) then for any ε > 0 there exist r0 > 0 such that r > r0 implies that

1

m(r, ρ)

∫ r

−r
ρ(t)

(∫ t+1

t

‖φ(σ, u)‖p dσ
)1/p

dt < ε (u ∈ X).

Since K is compact, we can find finite open balls Ok (k = 1, 2, 3, ..., n) with center xk and
radius less than ε

Lf+Lg
such that K ⊂ ∪mk=1Ok. Set Bk := {t ∈ R : α(t) ∈ Ok}. Then

R = ∪nk=1Bk. Let E1 = B1, Ek = Bk \ (∪k−1j=1Bj) (2 ≤ k ≤ m). Thus Ei ∩Ej = ∅ for i 6= j.



WEIGHTED PSEUDO ANTIPERIODIC SOLUTIONS 9

By Minkowski inequality, for r > r0 we have

1

m(r, ρ)

∫ r

−r
ρ(t)

(∫ t+1

t

‖φ(σ, α(σ))‖p dσ
)1/p

dt

=
1

m(r, ρ)

n∑
k=1

∫
Ek∩[−r,r]

ρ(t)

(∫ t+1

t

‖φ(σ, α(σ))‖p dσ
)1/p

dt

≤ 1

m(r, ρ)

n∑
k=1

∫
Ek∩[−r,r]

ρ(t)

(∫ t+1

t

‖φ(σ, α(σ))− φ(σ, α(xk))‖p dσ
)1/p

dt

+
1

m(r, ρ)

n∑
k=1

∫
Ek∩[−r,r]

ρ(t)

(∫ t+1

t

‖φ(σ, α(xk))‖p dσ
)1/p

dt

≤ 1

m(r, ρ)

n∑
k=1

∫
Ek∩[−r,r]

ρ(t)

(∫ t+1

t

‖f(σ, α(σ))− f(σ, α(xk))‖p dσ
)1/p

dt

+
1

m(r, ρ)

n∑
k=1

∫
Ek∩[−r,r]

ρ(t)

(∫ t+1

t

‖g(σ, α(σ))− g(σ, α(xk))‖p dσ
)1/p

dt

+
1

m(r, ρ)

n∑
k=1

∫
Ek∩[−r,r]

ρ(t)

(∫ t+1

t

‖φ(σ, α(xk))‖p dσ
)1/p

dt

≤ Lf
1

m(r, ρ)

n∑
k=1

∫
Ek∩[−r,r]

ρ(t)

(∫ 1

0

‖α(σ + t)− xk‖p dσ
)1/p

dt

+ Lg
1

m(r, ρ)

n∑
k=1

∫
Ek∩[−r,r]

ρ(t)

(∫ 1

0

‖α(σ + t)− xk‖p dσ
)1/p

dt

+
1

m(r, ρ)

n∑
k=1

∫
Ek∩[−r,r]

ρ(t)

(∫ t+1

t

‖φ(σ, α(xk))‖p dσ
)1/p

dt

< 2ε+
n∑
k=1

1

m(r, ρ)

∫ r

−r
ρ(t)

(∫ t+1

t

‖φ(σ, xk)‖p dσ
)1/p

dt.

Then

1

m(r, ρ)

∫ r

−r
ρ(t)

(∫ t+1

t

‖φ(σ, α(σ))‖p dσ
)1/p

dt < (n+ 2)ε (r > r0).

Hence

lim
r→∞

1

m(r, ρ)

∫ r

−r
ρ(t)

(∫ t+1

t

‖φ(σ, α(σ))‖p dσ
)1/p

dt = 0.

ThereforeH(·) ∈ B−1(PAA0(R, Lp(0, 1;X))). It follows that f(·, h(·)) ∈ WPPωapS
p(R, X).

�

Now, we obtain the existence and uniqueness of weighted pseudo antiperiodic solutions
with help of Theorem 2.16 and Theorem 3.2.
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Theorem 3.4. Let ρ ∈ U∞ and p > 1 and f = g + h ∈ WPPωapS
p(R×X,X) be given.

Suppose that

(H1) There exists ω > 0 such that f(t+ ω,−x) = −f(t, x).
(H2) There exist constants Lf , Lg > 0 such that

‖f(t, u)− f(t, v)‖ ≤ Lf‖u− v‖, ‖g(t, u)− g(t, v)‖ ≤ Lg‖u− v‖, t ∈ R, u, v ∈ X.

(H3) The operator A generates an α-resolvent family {Sα(t)}t≥0 such that ‖Sα(t)‖ ≤
ϕα(t), for all t ≥ 0, where ϕα(·) ∈ L1(R+) is nonincreasing such that ϕ0 :=∑∞

n=0 ϕα(n) <∞ and Lf < ‖ϕα‖−1.
Then the Equation (3.1) has a unique mild solution in WPPωap(R, X).

Proof. Consider the operator Q : WPPωap(R, X)→ WPPωap(R, X) defined by

Q(u)(t) :=

∫ t

−∞
S(t− s)f(s, u(s)) ds, t ∈ R.

First, we show thatQ(WPPωap(R, X)) ⊂ WPPωap(R, X). Let u = u1+u2 ∈ WPPωap(R, X).

Then u1 ∈ Pωap(R, X) and hence K := {u1(t) : t ∈ R} is compact. Moreover, it is clear
that u ∈ WPPωapS

p(R, X) and hence (iii) in Theorem 3.3 is satisfied. From (H1) and
(H2) we have that the conditions (i) and (ii) in Theorem 3.3 holds. It follows that
f(·, u(·)) ∈ WPPωapS

p(R, X). On the other hand, the hypothesis (H3) and Theorem
2.16 imply that Q(u)(t) ∈ WPPωap(R, X). Now, if u, v ∈ WPPωap(R, X) we have

‖Q(u)(t)−Q(v)(t)‖∞ = sup
t∈R

∥∥∥∥∫ t

−∞
S(t− s)[f(s, u(s))− f(s, v(s))] ds

∥∥∥∥
≤ Lf sup

t∈R

∫ ∞
0

‖S(s)‖‖u(t− s)− v(t− s)‖ ds

≤ Lf‖u− v‖∞
∫ ∞
0

ϕα(s) ds.

This proves that Q is a contraction, so by the Banach Fixed Point Theorem we conclude
that Q has unique fixed point. It follows that Q(u) = u ∈ WPPωap(R, X) and is unique.
Hence u is the unique mild solution of (3.1). �

We finish this paper with a simple application that no means generality but illustrates
how our hypotheses apply.

Example 3.5. We put A = −% in X = R, a(t) =
%

4

tα−1

Γ(α)
, % > 0, 0 < α < 1, and

f(t, u) = g(t, u) + h(t, u) where

g(t, u) = α(t) cosu, h(t, u) = β(t) cosu

with α(t) :=
∞∑
k=1

sin((2k + 1)t)

k2
and β(t) :=

1

1 + t2
.

We note that g(t+ π, u) = −g(t, u) for all t. Furthermore,

g(t+ π,−u) = cos(−u)α(t+ π) = cos(u)[−α(t)] = − cos(u)α(t) = −g(t, u);
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Hence g ∈ PωapSp(R×X,X) with ω = π. On the other hand, h ∈ PAA0(R×X,X) (see
[?]) and since PAA0(R×X,X) ⊂ PAA0S

p(R×X,X) then h ∈ PAA0S
p(R×X,X). It

follows that f ∈ WPAAωapS
p(R×X,X) with weight ρ(t) ≡ 1. Now,

‖g(t, u)− g(t, v)‖ ≤ 2
∞∑
k=1

1

k2
;

and

‖f(t, u)−f(t, v)‖ ≤ (|α(t)|+ |β(t)|) ‖u−v‖ ≤

[
∞∑
k=1

1

k2
+ 1

]
‖u−v‖ =

(
π2

6
+ 1

)
‖u−v‖.

Therefore the functions g(t, u) := α(t) cos(u), h(t, u) := β(t) cosu verify the hypothesis in
Theorem 3.4. Thus, we have that equation (1.2) takes the form

(3.2) Dαu(t) = −%u(t)− %2

4

∫ t

−∞

(t− s)α−1

Γ(α)
u(s)ds+ f(t, u(t)), t ∈ R.

From [15, Example 4.17], it follows that A generates an α-resolvent family {Sα(t)}t≥0 such
that

Ŝα(λ) =
λα

(λα + 2/%)2
=

λα−α/2

(λα + 2/%)
· λα−α/2

(λα + 2/%)
.

Thus, we obtain explicitly

Sα(t) = (r ∗ r)(t) t > 0,

with r(t) = t
α
2
−1Eα,α

2
(−%

2
tα), and where Eα,α

2
(·) is the Mittag-Leffler function.

Then, by Theorem 3.4, we can conclude that there exists a unique mild solution u(·) ∈
WPPωap(R, X) of Eq.(3.2) provided ‖Sα‖ < 6

π2+6
. We remark that given 0 < α < 1, we

can choose the number % > 0 such that ‖Sα‖ < 6
π2+6

as in the proof of [15, Lemma 3.9].
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Verlag, 1993.

17. Z. Xia. Weighted stepanov-like pseudoperiodicity and applications. Abstr. Appl. Anal. (2014), Art.
ID 980869, 14 pp.

18. Z. Xia and M. Fan. Weighted Stepanov-like pseudo almost automorphy and applications. Nonlinear
Anal. 75 (4) (2012), 2378–2397.
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